Algebraic number: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 181280597 - Original comment: **
Wikispaces>xenwolf
**Imported revision 181486479 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-11-19 17:25:15 UTC</tt>.<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2010-11-21 08:16:05 UTC</tt>.<br>
: The original revision id was <tt>181280597</tt>.<br>
: The original revision id was <tt>181486479</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">A [[http://mathworld.wolfram.com/UnivariatePolynomial.html|univariate polynomial]] a0x^n + a1x^(n-1) + ... + an whose coefficients ai are integers (or equivalently, rational numbers) has //roots// which are known as [[http://en.wikipedia.org/wiki/Algebraic_number|algebraic numbers]]. A root is a value r for which the [[http://en.wikipedia.org/wiki/Polynomial_function#Polynomial_functions|polynomial function]] f(x) = a0x^n + a1x^(n-1) + ... + a0 satisfies f(r) = 0. If r is a [[http://Real%20number|real number]], it is a //real algebraic number//.  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">A [[http://mathworld.wolfram.com/UnivariatePolynomial.html|univariate polynomial]] a0x^n + a1x^(n-1) + ... + an whose coefficients ai are integers (or equivalently, rational numbers) has **roots** which are known as **[[http://en.wikipedia.org/wiki/Algebraic_number|algebraic numbers]]**. A root is a value r for which the [[http://en.wikipedia.org/wiki/Polynomial_function#Polynomial_functions|polynomial function]] f(x) = a0x^n + a1x^(n-1) + ... + a0 satisfies f(r) = 0. If r is a [[http://Real%20number|real number]], it is a //real algebraic number//.  


Real algebraic numbers which are not also rational numbers turn up in various places in musical tuning theory. For instance, the intervals in the [[Target tunings|target tunings]] minimax or least squares are real algebraic numbers. An example of this is 1/4-comma meantone, where 2 and 5 are not tempered but 3 is tempered to 2 5^(1/4), a root of x^4-80. [[Generators]] for [[linear temperaments]] which are real algebraic numbers can have interesting properties in terms of the [[http://en.wikipedia.org/wiki/Combination_tone|combination tones]] they produce.  
Real algebraic numbers which are not also rational numbers turn up in various places in musical tuning theory. For instance, the intervals in the [[Target tunings|target tunings]] minimax or least squares are real algebraic numbers. An example of this is 1/4-comma meantone, where 2 and 5 are not tempered but 3 is tempered to 2 5^(1/4), a root of x^4-80. [[Generators]] for [[linear temperaments]] which are real algebraic numbers can have interesting properties in terms of the [[http://en.wikipedia.org/wiki/Combination_tone|combination tones]] they produce.  
Line 12: Line 12:
Finding numerical values for real algebraic numbers is probably best left to a computer algebra package, but iterative methods such as [[http://en.wikipedia.org/wiki/Newton%27s_method|Newton's method]]  can be used. A refinement of Newton's method is the [[http://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method|Durand–Kerner method]].</pre></div>
Finding numerical values for real algebraic numbers is probably best left to a computer algebra package, but iterative methods such as [[http://en.wikipedia.org/wiki/Newton%27s_method|Newton's method]]  can be used. A refinement of Newton's method is the [[http://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method|Durand–Kerner method]].</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Algebraic number&lt;/title&gt;&lt;/head&gt;&lt;body&gt;A &lt;a class="wiki_link_ext" href="http://mathworld.wolfram.com/UnivariatePolynomial.html" rel="nofollow"&gt;univariate polynomial&lt;/a&gt; a0x^n + a1x^(n-1) + ... + an whose coefficients ai are integers (or equivalently, rational numbers) has &lt;em&gt;roots&lt;/em&gt; which are known as &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Algebraic_number" rel="nofollow"&gt;algebraic numbers&lt;/a&gt;. A root is a value r for which the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Polynomial_function#Polynomial_functions" rel="nofollow"&gt;polynomial function&lt;/a&gt; f(x) = a0x^n + a1x^(n-1) + ... + a0 satisfies f(r) = 0. If r is a &lt;a class="wiki_link_ext" href="http://Real%20number" rel="nofollow"&gt;real number&lt;/a&gt;, it is a &lt;em&gt;real algebraic number&lt;/em&gt;. &lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Algebraic number&lt;/title&gt;&lt;/head&gt;&lt;body&gt;A &lt;a class="wiki_link_ext" href="http://mathworld.wolfram.com/UnivariatePolynomial.html" rel="nofollow"&gt;univariate polynomial&lt;/a&gt; a0x^n + a1x^(n-1) + ... + an whose coefficients ai are integers (or equivalently, rational numbers) has &lt;strong&gt;roots&lt;/strong&gt; which are known as &lt;strong&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Algebraic_number" rel="nofollow"&gt;algebraic numbers&lt;/a&gt;&lt;/strong&gt;. A root is a value r for which the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Polynomial_function#Polynomial_functions" rel="nofollow"&gt;polynomial function&lt;/a&gt; f(x) = a0x^n + a1x^(n-1) + ... + a0 satisfies f(r) = 0. If r is a &lt;a class="wiki_link_ext" href="http://Real%20number" rel="nofollow"&gt;real number&lt;/a&gt;, it is a &lt;em&gt;real algebraic number&lt;/em&gt;. &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Real algebraic numbers which are not also rational numbers turn up in various places in musical tuning theory. For instance, the intervals in the &lt;a class="wiki_link" href="/Target%20tunings"&gt;target tunings&lt;/a&gt; minimax or least squares are real algebraic numbers. An example of this is 1/4-comma meantone, where 2 and 5 are not tempered but 3 is tempered to 2 5^(1/4), a root of x^4-80. &lt;a class="wiki_link" href="/Generators"&gt;Generators&lt;/a&gt; for &lt;a class="wiki_link" href="/linear%20temperaments"&gt;linear temperaments&lt;/a&gt; which are real algebraic numbers can have interesting properties in terms of the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Combination_tone" rel="nofollow"&gt;combination tones&lt;/a&gt; they produce. &lt;br /&gt;
Real algebraic numbers which are not also rational numbers turn up in various places in musical tuning theory. For instance, the intervals in the &lt;a class="wiki_link" href="/Target%20tunings"&gt;target tunings&lt;/a&gt; minimax or least squares are real algebraic numbers. An example of this is 1/4-comma meantone, where 2 and 5 are not tempered but 3 is tempered to 2 5^(1/4), a root of x^4-80. &lt;a class="wiki_link" href="/Generators"&gt;Generators&lt;/a&gt; for &lt;a class="wiki_link" href="/linear%20temperaments"&gt;linear temperaments&lt;/a&gt; which are real algebraic numbers can have interesting properties in terms of the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Combination_tone" rel="nofollow"&gt;combination tones&lt;/a&gt; they produce. &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Finding numerical values for real algebraic numbers is probably best left to a computer algebra package, but iterative methods such as &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Newton%27s_method" rel="nofollow"&gt;Newton's method&lt;/a&gt;  can be used. A refinement of Newton's method is the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method" rel="nofollow"&gt;Durand–Kerner method&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>
Finding numerical values for real algebraic numbers is probably best left to a computer algebra package, but iterative methods such as &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Newton%27s_method" rel="nofollow"&gt;Newton's method&lt;/a&gt;  can be used. A refinement of Newton's method is the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method" rel="nofollow"&gt;Durand–Kerner method&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>