81/80: Difference between revisions
Wikispaces>Gedankenwelt **Imported revision 538626006 - Original comment: ** |
Wikispaces>PiotrGrochowski **Imported revision 589239734 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:PiotrGrochowski|PiotrGrochowski]] and made on <tt>2016-08-12 04:26:04 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>589239734</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 10: | Line 10: | ||
21.506290 cents | 21.506290 cents | ||
The **syntonic** or **Didymus comma** (frequency ratio **81/80**) is the smallest [[superparticular|superparticular interval]] which belongs to the [[5-limit]]. Like [[16_15|16/15]], [[625_624|625/624]], [[2401_2400|2401/2400]] and [[4096_4095|4096/4095]] it has a fourth power as a numerator. Fourth powers are squares, and any comma with a square numerator is the ratio between two larger successive superparticular intervals; it is in fact the difference between [[10_9|10/9]] and [[9_8|9/8]], the product of which is the just major third, [[5_4|5/4]]. That the numerator is a fourth power entails that the larger of these two intervals itself has a square numerator; 9/8 is the interval between the successive superparticulars 4/3 and 3/2. | The **syntonic** or **Didymus comma** (frequency ratio **81/80**) is the smallest [[superparticular|superparticular interval]] which belongs to the [[5-limit]]. Like [[16_15|16/15]], [[625_624|625/624]], [[2401_2400|2401/2400]] and [[4096_4095|4096/4095]] it has a fourth power as a numerator. Fourth powers are squares, and any comma with a square numerator is the ratio between two larger successive superparticular intervals; it is in fact the difference between [[10_9|10/9]] and [[9_8|9/8]], the product of which is the just major third, [[5_4|5/4]]. That the numerator is a fourth power entails that the larger of these two intervals itself has a square numerator; 9/8 is the interval between the successive superparticulars 4/3 and 3/2. [[55edo]] tempers it out, while [[15edo]] does not. | ||
Tempering out 81/80 gives a tuning for the [[tone|whole tone]] which is intermediate between 10/9 and 9/8, and leads to [[Meantone family|meantone temperament]]. | Tempering out 81/80 gives a tuning for the [[tone|whole tone]] which is intermediate between 10/9 and 9/8, and leads to [[Meantone family|meantone temperament]]. | ||
Line 56: | Line 56: | ||
21.506290 cents<br /> | 21.506290 cents<br /> | ||
<br /> | <br /> | ||
The <strong>syntonic</strong> or <strong>Didymus comma</strong> (frequency ratio <strong>81/80</strong>) is the smallest <a class="wiki_link" href="/superparticular">superparticular interval</a> which belongs to the <a class="wiki_link" href="/5-limit">5-limit</a>. Like <a class="wiki_link" href="/16_15">16/15</a>, <a class="wiki_link" href="/625_624">625/624</a>, <a class="wiki_link" href="/2401_2400">2401/2400</a> and <a class="wiki_link" href="/4096_4095">4096/4095</a> it has a fourth power as a numerator. Fourth powers are squares, and any comma with a square numerator is the ratio between two larger successive superparticular intervals; it is in fact the difference between <a class="wiki_link" href="/10_9">10/9</a> and <a class="wiki_link" href="/9_8">9/8</a>, the product of which is the just major third, <a class="wiki_link" href="/5_4">5/4</a>. That the numerator is a fourth power entails that the larger of these two intervals itself has a square numerator; 9/8 is the interval between the successive superparticulars 4/3 and 3/2.<br /> | The <strong>syntonic</strong> or <strong>Didymus comma</strong> (frequency ratio <strong>81/80</strong>) is the smallest <a class="wiki_link" href="/superparticular">superparticular interval</a> which belongs to the <a class="wiki_link" href="/5-limit">5-limit</a>. Like <a class="wiki_link" href="/16_15">16/15</a>, <a class="wiki_link" href="/625_624">625/624</a>, <a class="wiki_link" href="/2401_2400">2401/2400</a> and <a class="wiki_link" href="/4096_4095">4096/4095</a> it has a fourth power as a numerator. Fourth powers are squares, and any comma with a square numerator is the ratio between two larger successive superparticular intervals; it is in fact the difference between <a class="wiki_link" href="/10_9">10/9</a> and <a class="wiki_link" href="/9_8">9/8</a>, the product of which is the just major third, <a class="wiki_link" href="/5_4">5/4</a>. That the numerator is a fourth power entails that the larger of these two intervals itself has a square numerator; 9/8 is the interval between the successive superparticulars 4/3 and 3/2. <a class="wiki_link" href="/55edo">55edo</a> tempers it out, while <a class="wiki_link" href="/15edo">15edo</a> does not.<br /> | ||
<br /> | <br /> | ||
Tempering out 81/80 gives a tuning for the <a class="wiki_link" href="/tone">whole tone</a> which is intermediate between 10/9 and 9/8, and leads to <a class="wiki_link" href="/Meantone%20family">meantone temperament</a>.<br /> | Tempering out 81/80 gives a tuning for the <a class="wiki_link" href="/tone">whole tone</a> which is intermediate between 10/9 and 9/8, and leads to <a class="wiki_link" href="/Meantone%20family">meantone temperament</a>.<br /> |