80edo: Difference between revisions
Wikispaces>xenwolf **Imported revision 239564411 - Original comment: ** |
Wikispaces>phylingual **Imported revision 353014670 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-07-13 14:04:47 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>353014670</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //80 equal temperament//, often abbreviated 80-tET, 80-EDO, or 80-ET, is the scale derived by dividing the octave into 80 equally-sized steps. Each step represents a frequency ratio of exactly 15 [[cent]]s. 80et is the first equal temperament | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //80 equal temperament//, often abbreviated 80-tET, 80-EDO, or 80-ET, is the scale derived by dividing the octave into 80 equally-sized steps. Each step represents a frequency ratio of exactly 15 [[cent]]s. 80et is the first equal temperament that represent the [[19-limit]] [[tonality diamond]] [[consistent]]ly (it barely manages to do so), and in fact represents the 21 odd limit tonality diamond consistently also. | ||
80 et [[tempering out|tempers out]] 136/135, 169/168, 176/175, 190/189, 221/220, 256/255, 286/285, 289/288, 325/324, 351/350, 352/351, 361/360, 364/363, 400/399, 456/455, 476/475, 540/539, 561/560, 595/594, 715/714, 936/935, 969/968, 1001/1000, 1275/1274, 1331/1330, 1445/1444, 1521/1520, 1540/1539 and 1729/1728, not to mention such important non-superparticular commas as 2048/2025, 4000/3969, 1728/1715 and 3136/3125. | 80 et [[tempering out|tempers out]] 136/135, 169/168, 176/175, 190/189, 221/220, 256/255, 286/285, 289/288, 325/324, 351/350, 352/351, 361/360, 364/363, 400/399, 456/455, 476/475, 540/539, 561/560, 595/594, 715/714, 936/935, 969/968, 1001/1000, 1275/1274, 1331/1330, 1445/1444, 1521/1520, 1540/1539 and 1729/1728, not to mention such important non-superparticular commas as 2048/2025, 4000/3969, 1728/1715 and 3136/3125. | ||
Line 22: | Line 22: | ||
41&80 <<7 26 25 -3 -24 -33 20 ... || | 41&80 <<7 26 25 -3 -24 -33 20 ... || | ||
In each case, the numbers joined by an ampersand represent 19-limit [[Patent val|patent vals]] (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given.</pre></div> | In each case, the numbers joined by an ampersand represent 19-limit [[Patent val|patent vals]] (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given. | ||
=Intervals of 80edo= | |||
||~ degrees ||~ cents ||~ 19 prime limit ratios || | |||
|| 0 || 0 || 1/1 || | |||
|| 1 || 15 || 64/63 || | |||
|| 2 || 30 || 81/80 || | |||
|| 3 || 45 || 34/33, 36/35 || | |||
|| 4 || 60 || 26/25, 28/27, 33/32, 35/34 || | |||
|| 5 || 75 || 22/21, 25/24, 27/26 || | |||
|| 6 || 90 || 19/18, 20/19, 21/20 || | |||
|| 7 || 105 || 16/15, 17/16, 18/17 || | |||
|| 8 || 120 || 14/13, 15/14 || | |||
|| 9 || 135 || 13/12 || | |||
|| 10 || 150 || 12/11 || | |||
|| 11 || 165 || 11/10 || | |||
|| 12 || 180 || 10/9, 21/19 || | |||
|| 13 || 195 || 19/17 || | |||
|| 14 || 210 || 9/8, 17/15 || | |||
|| 15 || 225 || 8/7 || | |||
|| 16 || 240 || || | |||
|| 17 || 255 || 15/13, 22/19 || | |||
|| 18 || 270 || 7/6 || | |||
|| 19 || 285 || 13/11, 20/17 || | |||
|| 20 || 300 || 19/16, 25/21 || | |||
|| 21 || 315 || 6/5 || | |||
|| 22 || 330 || 17/14 || | |||
|| 23 || 345 || 11/9 || | |||
|| 24 || 360 || 16/13, 21/17 || | |||
|| 25 || 375 || || | |||
|| 26 || 390 || 5/4 || | |||
|| 27 || 405 || 19/15, 24/19 || | |||
|| 28 || 420 || 14/11 || | |||
|| 29 || 435 || 9/7 || | |||
|| 30 || 450 || 13/10, 22/17 || | |||
|| 31 || 465 || 17/13 || | |||
|| 32 || 480 || 21/16, 25/19 || | |||
|| 33 || 495 || 4/3 || | |||
|| 34 || 510 || || | |||
|| 35 || 525 || 19/14 || | |||
|| 36 || 540 || 26/19 || | |||
|| 37 || 555 || 11/8 || | |||
|| 38 || 570 || 18/13 || | |||
|| 39 || 585 || 7/5 || | |||
|| 40 || 600 || 17/12, 24/17 ||</pre></div> | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>80edo</title></head><body>The <em>80 equal temperament</em>, often abbreviated 80-tET, 80-EDO, or 80-ET, is the scale derived by dividing the octave into 80 equally-sized steps. Each step represents a frequency ratio of exactly 15 <a class="wiki_link" href="/cent">cent</a>s. 80et is the first equal temperament | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>80edo</title></head><body>The <em>80 equal temperament</em>, often abbreviated 80-tET, 80-EDO, or 80-ET, is the scale derived by dividing the octave into 80 equally-sized steps. Each step represents a frequency ratio of exactly 15 <a class="wiki_link" href="/cent">cent</a>s. 80et is the first equal temperament that represent the <a class="wiki_link" href="/19-limit">19-limit</a> <a class="wiki_link" href="/tonality%20diamond">tonality diamond</a> <a class="wiki_link" href="/consistent">consistent</a>ly (it barely manages to do so), and in fact represents the 21 odd limit tonality diamond consistently also.<br /> | ||
<br /> | <br /> | ||
80 et <a class="wiki_link" href="/tempering%20out">tempers out</a> 136/135, 169/168, 176/175, 190/189, 221/220, 256/255, 286/285, 289/288, 325/324, 351/350, 352/351, 361/360, 364/363, 400/399, 456/455, 476/475, 540/539, 561/560, 595/594, 715/714, 936/935, 969/968, 1001/1000, 1275/1274, 1331/1330, 1445/1444, 1521/1520, 1540/1539 and 1729/1728, not to mention such important non-superparticular commas as 2048/2025, 4000/3969, 1728/1715 and 3136/3125.<br /> | 80 et <a class="wiki_link" href="/tempering%20out">tempers out</a> 136/135, 169/168, 176/175, 190/189, 221/220, 256/255, 286/285, 289/288, 325/324, 351/350, 352/351, 361/360, 364/363, 400/399, 456/455, 476/475, 540/539, 561/560, 595/594, 715/714, 936/935, 969/968, 1001/1000, 1275/1274, 1331/1330, 1445/1444, 1521/1520, 1540/1539 and 1729/1728, not to mention such important non-superparticular commas as 2048/2025, 4000/3969, 1728/1715 and 3136/3125.<br /> | ||
Line 40: | Line 84: | ||
41&amp;80 &lt;&lt;7 26 25 -3 -24 -33 20 ... ||<br /> | 41&amp;80 &lt;&lt;7 26 25 -3 -24 -33 20 ... ||<br /> | ||
<br /> | <br /> | ||
In each case, the numbers joined by an ampersand represent 19-limit <a class="wiki_link" href="/Patent%20val">patent vals</a> (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given.</body></html></pre></div> | In each case, the numbers joined by an ampersand represent 19-limit <a class="wiki_link" href="/Patent%20val">patent vals</a> (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given.<br /> | ||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Intervals of 80edo"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals of 80edo</h1> | |||
<table class="wiki_table"> | |||
<tr> | |||
<th>degrees<br /> | |||
</th> | |||
<th>cents<br /> | |||
</th> | |||
<th>19 prime limit ratios<br /> | |||
</th> | |||
</tr> | |||
<tr> | |||
<td>0<br /> | |||
</td> | |||
<td>0<br /> | |||
</td> | |||
<td>1/1<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>1<br /> | |||
</td> | |||
<td>15<br /> | |||
</td> | |||
<td>64/63<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>2<br /> | |||
</td> | |||
<td>30<br /> | |||
</td> | |||
<td>81/80<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>3<br /> | |||
</td> | |||
<td>45<br /> | |||
</td> | |||
<td>34/33, 36/35<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>4<br /> | |||
</td> | |||
<td>60<br /> | |||
</td> | |||
<td>26/25, 28/27, 33/32, 35/34<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>5<br /> | |||
</td> | |||
<td>75<br /> | |||
</td> | |||
<td>22/21, 25/24, 27/26<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>6<br /> | |||
</td> | |||
<td>90<br /> | |||
</td> | |||
<td>19/18, 20/19, 21/20<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>7<br /> | |||
</td> | |||
<td>105<br /> | |||
</td> | |||
<td>16/15, 17/16, 18/17<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>8<br /> | |||
</td> | |||
<td>120<br /> | |||
</td> | |||
<td>14/13, 15/14<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>9<br /> | |||
</td> | |||
<td>135<br /> | |||
</td> | |||
<td>13/12<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>10<br /> | |||
</td> | |||
<td>150<br /> | |||
</td> | |||
<td>12/11<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>11<br /> | |||
</td> | |||
<td>165<br /> | |||
</td> | |||
<td>11/10<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>12<br /> | |||
</td> | |||
<td>180<br /> | |||
</td> | |||
<td>10/9, 21/19<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>13<br /> | |||
</td> | |||
<td>195<br /> | |||
</td> | |||
<td>19/17<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>14<br /> | |||
</td> | |||
<td>210<br /> | |||
</td> | |||
<td>9/8, 17/15<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>15<br /> | |||
</td> | |||
<td>225<br /> | |||
</td> | |||
<td>8/7<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>16<br /> | |||
</td> | |||
<td>240<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>17<br /> | |||
</td> | |||
<td>255<br /> | |||
</td> | |||
<td>15/13, 22/19<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>18<br /> | |||
</td> | |||
<td>270<br /> | |||
</td> | |||
<td>7/6<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>19<br /> | |||
</td> | |||
<td>285<br /> | |||
</td> | |||
<td>13/11, 20/17<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>20<br /> | |||
</td> | |||
<td>300<br /> | |||
</td> | |||
<td>19/16, 25/21<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>21<br /> | |||
</td> | |||
<td>315<br /> | |||
</td> | |||
<td>6/5<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>22<br /> | |||
</td> | |||
<td>330<br /> | |||
</td> | |||
<td>17/14<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>23<br /> | |||
</td> | |||
<td>345<br /> | |||
</td> | |||
<td>11/9<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>24<br /> | |||
</td> | |||
<td>360<br /> | |||
</td> | |||
<td>16/13, 21/17<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>25<br /> | |||
</td> | |||
<td>375<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>26<br /> | |||
</td> | |||
<td>390<br /> | |||
</td> | |||
<td>5/4<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>27<br /> | |||
</td> | |||
<td>405<br /> | |||
</td> | |||
<td>19/15, 24/19<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>28<br /> | |||
</td> | |||
<td>420<br /> | |||
</td> | |||
<td>14/11<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>29<br /> | |||
</td> | |||
<td>435<br /> | |||
</td> | |||
<td>9/7<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>30<br /> | |||
</td> | |||
<td>450<br /> | |||
</td> | |||
<td>13/10, 22/17<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>31<br /> | |||
</td> | |||
<td>465<br /> | |||
</td> | |||
<td>17/13<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>32<br /> | |||
</td> | |||
<td>480<br /> | |||
</td> | |||
<td>21/16, 25/19<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>33<br /> | |||
</td> | |||
<td>495<br /> | |||
</td> | |||
<td>4/3<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>34<br /> | |||
</td> | |||
<td>510<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>35<br /> | |||
</td> | |||
<td>525<br /> | |||
</td> | |||
<td>19/14<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>36<br /> | |||
</td> | |||
<td>540<br /> | |||
</td> | |||
<td>26/19<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>37<br /> | |||
</td> | |||
<td>555<br /> | |||
</td> | |||
<td>11/8<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>38<br /> | |||
</td> | |||
<td>570<br /> | |||
</td> | |||
<td>18/13<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>39<br /> | |||
</td> | |||
<td>585<br /> | |||
</td> | |||
<td>7/5<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>40<br /> | |||
</td> | |||
<td>600<br /> | |||
</td> | |||
<td>17/12, 24/17<br /> | |||
</td> | |||
</tr> | |||
</table> | |||
</body></html></pre></div> |