62edo: Difference between revisions

Wikispaces>Osmiorisbendi
**Imported revision 339937392 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 340003066 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2012-05-27 20:34:06 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-05-28 02:28:38 UTC</tt>.<br>
: The original revision id was <tt>339937392</tt>.<br>
: The original revision id was <tt>340003066</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 10: Line 10:
62edo divides the octave into 62 equal parts of 19.35484 cents each. 62 = 2 * 31 and the patent val is a contorted 31edo through the 11-limit; in the 13-limit it tempers out 169/168, 1188/1183, 847/845 and 676/675. It provides the optimal patent val for [[31 comma temperaments#Gallium|gallium]], [[Starling temperaments#Valentine%20temperament-Semivalentine|semivalentine]] and [[Meantone family#Septimal%20meantone-Unidecimal%20meantone%20aka%20Huygens-Hemimeantone|hemimeantone]] temperaments.
62edo divides the octave into 62 equal parts of 19.35484 cents each. 62 = 2 * 31 and the patent val is a contorted 31edo through the 11-limit; in the 13-limit it tempers out 169/168, 1188/1183, 847/845 and 676/675. It provides the optimal patent val for [[31 comma temperaments#Gallium|gallium]], [[Starling temperaments#Valentine%20temperament-Semivalentine|semivalentine]] and [[Meantone family#Septimal%20meantone-Unidecimal%20meantone%20aka%20Huygens-Hemimeantone|hemimeantone]] temperaments.


It is also strong as an 1/8-tone [[Armodue-Hornbostel]] system, with the 6th being 35 steps. However, 31 is a "false" quarter-tone system with respect to the same temperament since the Armodue-Hornbostel whole tone is simplest when achieved by a chain of 5 of the septimal minor third at 7\31, which is a good generator for [[Orwell]]. This makes 8\62 an Orwell whole tone as well, so 62 is twice an 1/8-tone system; but this is no real surprise since 1/8-tone systems will have 40 to 80 divisions in the octave as a matter of course.
Using the 35\62 generator, which leads to the &lt;62 97 143 173| val, 62edo is also an excellent tuning for septimal mavila temperament; alternatively &lt;62 97 143 172| supports hornbostel.  


===**62-EDO Intervals**===  
===**62-EDO Intervals**===  
Line 90: Line 90:
62edo divides the octave into 62 equal parts of 19.35484 cents each. 62 = 2 * 31 and the patent val is a contorted 31edo through the 11-limit; in the 13-limit it tempers out 169/168, 1188/1183, 847/845 and 676/675. It provides the optimal patent val for &lt;a class="wiki_link" href="/31%20comma%20temperaments#Gallium"&gt;gallium&lt;/a&gt;, &lt;a class="wiki_link" href="/Starling%20temperaments#Valentine%20temperament-Semivalentine"&gt;semivalentine&lt;/a&gt; and &lt;a class="wiki_link" href="/Meantone%20family#Septimal%20meantone-Unidecimal%20meantone%20aka%20Huygens-Hemimeantone"&gt;hemimeantone&lt;/a&gt; temperaments.&lt;br /&gt;
62edo divides the octave into 62 equal parts of 19.35484 cents each. 62 = 2 * 31 and the patent val is a contorted 31edo through the 11-limit; in the 13-limit it tempers out 169/168, 1188/1183, 847/845 and 676/675. It provides the optimal patent val for &lt;a class="wiki_link" href="/31%20comma%20temperaments#Gallium"&gt;gallium&lt;/a&gt;, &lt;a class="wiki_link" href="/Starling%20temperaments#Valentine%20temperament-Semivalentine"&gt;semivalentine&lt;/a&gt; and &lt;a class="wiki_link" href="/Meantone%20family#Septimal%20meantone-Unidecimal%20meantone%20aka%20Huygens-Hemimeantone"&gt;hemimeantone&lt;/a&gt; temperaments.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
It is also strong as an 1/8-tone &lt;a class="wiki_link" href="/Armodue-Hornbostel"&gt;Armodue-Hornbostel&lt;/a&gt; system, with the 6th being 35 steps. However, 31 is a &amp;quot;false&amp;quot; quarter-tone system with respect to the same temperament since the Armodue-Hornbostel whole tone is simplest when achieved by a chain of 5 of the septimal minor third at 7\31, which is a good generator for &lt;a class="wiki_link" href="/Orwell"&gt;Orwell&lt;/a&gt;. This makes 8\62 an Orwell whole tone as well, so 62 is twice an 1/8-tone system; but this is no real surprise since 1/8-tone systems will have 40 to 80 divisions in the octave as a matter of course.&lt;br /&gt;
Using the 35\62 generator, which leads to the &amp;lt;62 97 143 173| val, 62edo is also an excellent tuning for septimal mavila temperament; alternatively &amp;lt;62 97 143 172| supports hornbostel. &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x62 tone equal temperament--62-EDO Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;&lt;strong&gt;62-EDO Intervals&lt;/strong&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x62 tone equal temperament--62-EDO Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;&lt;strong&gt;62-EDO Intervals&lt;/strong&gt;&lt;/h3&gt;