55edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 164473677 - Original comment: **
 
Wikispaces>Osmiorisbendi
**Imported revision 211592224 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-09-22 01:06:02 UTC</tt>.<br>
: This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2011-03-17 19:19:56 UTC</tt>.<br>
: The original revision id was <tt>164473677</tt>.<br>
: The original revision id was <tt>211592224</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//55edo// divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to 1/6 comma meantone (and is almost exactly 10/57 comma meantone.) [[http://en.wikipedia.org/wiki/Georg_Philipp_Telemann|Telemann]] suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by [[http://en.wikipedia.org/wiki/Leopold_Mozart|Leopold]] and [[http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart|Wolfgang Mozart]]. It can also be used for [[Meantone family|mohajira and liese]] temperaments.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #008023; font-size: 103%;"&gt;55 tone equal temperament&lt;/span&gt;=
//55edo// divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to 1/6 comma meantone (and is almost exactly 10/57 comma meantone.) [[http://en.wikipedia.org/wiki/Georg_Philipp_Telemann|Telemann]] suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by [[http://en.wikipedia.org/wiki/Leopold_Mozart|Leopold]] and [[http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart|Wolfgang Mozart]]. It can also be used for [[Meantone family|mohajira and liese]] temperaments.


5-limit commas: 81/80, &lt;31 1 -14|
5-limit commas: 81/80, &lt;31 1 -14|
Line 12: Line 13:
7-limit commas: 81/80, 686/675, 6144/6125
7-limit commas: 81/80, 686/675, 6144/6125


11-limit commas: 81/80, 121/120, 176/175, 686/675</pre></div>
11-limit commas: 81/80, 121/120, 176/175, 686/675
 
==Intervals==
|| Degrees of 55-EDO || Cents value ||
|| 0 || 0 ||
|| 1 || 21,818 ||
|| 2 || 43,636 ||
|| 3 || 65,455 ||
|| 4 || 87,273 ||
|| 5 || 109,091 ||
|| 6 || 130,909 ||
|| 7 || 152,727 ||
|| 8 || 174,545 ||
|| 9 || 196,364 ||
|| 10 || 218,182 ||
|| 11 || 240 ||
|| 12 || 261,818 ||
|| 13 || 283,636 ||
|| 14 || 305,455 ||
|| 15 || 327,273 ||
|| 16 || 349,091 ||
|| 17 || 370,909 ||
|| 18 || 392,727 ||
|| 19 || 414,545 ||
|| 20 || 436,364 ||
|| 21 || 458,182 ||
|| 22 || 480 ||
|| 23 || 501,818 ||
|| 24 || 523,636 ||
|| 25 || 545,455 ||
|| 26 || 567,273 ||
|| 27 || 589,091 ||
|| 28 || 610,909 ||
|| 29 || 632,727 ||
|| 30 || 654,545 ||
|| 31 || 676,364 ||
|| 32 || 698,182 ||
|| 33 || 720 ||
|| 34 || 741,818 ||
|| 35 || 763,636 ||
|| 36 || 785,455 ||
|| 37 || 807,273 ||
|| 38 || 829,091 ||
|| 39 || 850,909 ||
|| 40 || 872,727 ||
|| 41 || 894,545 ||
|| 42 || 916,364 ||
|| 43 || 938,182 ||
|| 44 || 960 ||
|| 45 || 981,818 ||
|| 46 || 1003,636 ||
|| 47 || 1025,455 ||
|| 48 || 1047,273 ||
|| 49 || 1069,091 ||
|| 50 || 1090,909 ||
|| 51 || 1112,727 ||
|| 52 || 1134,545 ||
|| 53 || 1156,364 ||
|| 54 || 1178,182 ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;55edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;em&gt;55edo&lt;/em&gt; divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to 1/6 comma meantone (and is almost exactly 10/57 comma meantone.) &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Georg_Philipp_Telemann" rel="nofollow"&gt;Telemann&lt;/a&gt; suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Leopold_Mozart" rel="nofollow"&gt;Leopold&lt;/a&gt; and &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart" rel="nofollow"&gt;Wolfgang Mozart&lt;/a&gt;. It can also be used for &lt;a class="wiki_link" href="/Meantone%20family"&gt;mohajira and liese&lt;/a&gt; temperaments.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;55edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x55 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #008023; font-size: 103%;"&gt;55 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
&lt;em&gt;55edo&lt;/em&gt; divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to 1/6 comma meantone (and is almost exactly 10/57 comma meantone.) &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Georg_Philipp_Telemann" rel="nofollow"&gt;Telemann&lt;/a&gt; suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Leopold_Mozart" rel="nofollow"&gt;Leopold&lt;/a&gt; and &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart" rel="nofollow"&gt;Wolfgang Mozart&lt;/a&gt;. It can also be used for &lt;a class="wiki_link" href="/Meantone%20family"&gt;mohajira and liese&lt;/a&gt; temperaments.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
5-limit commas: 81/80, &amp;lt;31 1 -14|&lt;br /&gt;
5-limit commas: 81/80, &amp;lt;31 1 -14|&lt;br /&gt;
Line 20: Line 80:
7-limit commas: 81/80, 686/675, 6144/6125&lt;br /&gt;
7-limit commas: 81/80, 686/675, 6144/6125&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
11-limit commas: 81/80, 121/120, 176/175, 686/675&lt;/body&gt;&lt;/html&gt;</pre></div>
11-limit commas: 81/80, 121/120, 176/175, 686/675&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x55 tone equal temperament-Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h2&gt;
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Degrees of 55-EDO&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Cents value&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21,818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;43,636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;65,455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;87,273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;109,091&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;130,909&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;152,727&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;174,545&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;196,364&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;218,182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;240&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;261,818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;283,636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;305,455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;327,273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;349,091&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;370,909&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;392,727&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;414,545&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;436,364&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;458,182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;480&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;501,818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;523,636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;545,455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;567,273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;589,091&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;610,909&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;632,727&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;654,545&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;676,364&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;698,182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;720&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;741,818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;763,636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;785,455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;807,273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;829,091&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;850,909&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;872,727&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;894,545&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;916,364&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;938,182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;960&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;981,818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1003,636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1025,455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1047,273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1069,091&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1090,909&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1112,727&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1134,545&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1156,364&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1178,182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;/body&gt;&lt;/html&gt;</pre></div>