50edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 321254968 - Original comment: **
Wikispaces>jdfreivald
**Imported revision 342313156 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-04-16 19:43:10 UTC</tt>.<br>
: This revision was by author [[User:jdfreivald|jdfreivald]] and made on <tt>2012-06-03 23:24:52 UTC</tt>.<br>
: The original revision id was <tt>321254968</tt>.<br>
: The original revision id was <tt>342313156</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//50edo// divides the [[octave]] into 50 equal parts of precisely 24 [[cent]]s each. In the [[5-limit]], it tempers out 81/80, making it a [[meantone]] system, and in that capacity has historically has drawn some notice. In "Harmonics or the Philosophy of Musical Sounds" (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the [[Target tunings|least squares]] tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While [[31edo]] extends meantone with a [[7_4|7/4]] which is nearly pure, 50 has a flat 7/4 but both [[11_8|11/8]] and [[13_8|13/8]] are nearly pure.  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//50edo// divides the [[octave]] into 50 equal parts of precisely 24 [[cent]]s each. In the [[5-limit]], it tempers out 81/80, making it a [[meantone]] system, and in that capacity has historically has drawn some notice. In "Harmonics or the Philosophy of Musical Sounds" (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the [[Target tunings|least squares]] tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While [[31edo]] extends meantone with a [[7_4|7/4]] which is nearly pure, 50 has a flat 7/4 but both [[11_8|11/8]] and [[13_8|13/8]] are nearly pure.


50 tempers out 126/125 in the [[7-limit]], indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the [[11-limit]] and 105/104, 144/143 and 196/195 in the [[13-limit]], and can be used for even higher limits. Aside from meantone, it can be used to advantage for the 15&amp;50 temperament. It is also the unique equal temperament tempering out both 81/80 and the [[vishnuzma]], 6115295232/6103515625 = |23 6 -14&gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.
50 tempers out 126/125 in the [[7-limit]], indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the [[11-limit]] and 105/104, 144/143 and 196/195 in the [[13-limit]], and can be used for even higher limits. Aside from meantone, it can be used to advantage for the 15&amp;50 temperament. It is also the unique equal temperament tempering out both 81/80 and the [[vishnuzma]], 6115295232/6103515625 = |23 6 -14&gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.


[[http://www.archive.org/details/harmonicsorphilo00smit|Robert Smith's book online]]
[[http://www.archive.org/details/harmonicsorphilo00smit|Robert Smith's book online]]
Line 17: Line 17:


==Intervals==  
==Intervals==  
|| Degrees of 50-EDO || Cents value ||
|| Degrees of 50-EDO || Cents value ||
|| 0 || 0 ||
|| 0 || 0 ||
Line 69: Line 68:
|| 48 || 1152 ||
|| 48 || 1152 ||
|| 49 || 1176 ||
|| 49 || 1176 ||
==Commas==
50 EDO tempers out the following commas. (Note: This assumes the val &lt; 50 79 116 140 173 185 204 212 226 |, comma values rounded to 2 decimal places.)
||~ ===In bra format=== ||~ ===In cents=== ||~ ===Ratio=== ||~ ===Name 1=== ||~ ===Name2=== ||
|| | -4 4 -1 &gt; ||&gt; 21.51 ||= 81/80 || Syntonic comma || Didymus comma ||
|| | -8 8 -2 &gt; ||&gt; 43.01 ||= 6561/6400 || Mathieu superdiesis ||  ||
|| | 23 6 -14 &gt; ||&gt; 3.34 ||= 1212717/1210381 || Vishnu comma ||  ||
|| | 1 2 -3 1 &gt; ||&gt; 13.79 ||= 126/125 || Small septimal comma ||  ||
|| | -5 2 2 -1 &gt; ||&gt; 7.71 ||= 225/224 || Septimal kleisma ||  ||
|| | 6 0 -5 2 &gt; ||&gt; 6.08 ||= 3136/3125 || Middle second comma ||  ||
|| | -6 -8 2 5 &gt; ||&gt; 1.12 ||= 420175/419904 ||  ||  ||
|| |-11 2 7 -3 &gt; ||&gt; 1.63 ||= 703125/702464 ||  ||  ||
|| | 11 -10 -10 10 &gt; ||&gt; 5.57 ||= 6772805/6751042 ||  ||  ||
|| |-13 10 0 -1 &gt; ||&gt; 50.72 ||= 59049/57344 || Harrison's comma ||  ||
|| | 2 3 1 -2 -1 &gt; ||&gt; 3.21 ||= 540/539 || Swets' comma ||  ||
|| | -3 4 -2 -2 2 &gt; ||&gt; 0.18 ||= 9801/9800 || Kalisma || Gauss' comma ||
|| | 5 -1 3 0 -3 &gt; ||&gt; 3.03 ||= 4000/3993 || Undecimal schisma ||  ||
|| | -7 -1 1 1 1 &gt; ||&gt; 4.50 ||= 385/384 || Undecimal kleisma ||  ||
|| | 2 -1 0 1 -2 1 &gt; ||&gt; 4.76 ||= 364/363 ||  ||  ||
|| | 2 3 0 -1 1 -2 &gt; ||&gt; 7.30 ||= 1188/1183 || Kestrel Comma ||  ||
|| | 3 0 2 0 1 -3 &gt; ||&gt; 2.36 ||= 2200/2197 || Parizek comma ||  ||
|| | -3 1 1 1 0 -1 &gt; ||&gt; 16.57 ||= 105/104 || Small tridecimal comma ||  ||
|| | 3 -2 0 1 -1 -1 0 0 1 &gt; ||&gt; 1.34 ||= 1288/1287 || Triaphonisma ||  ||


[[http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3|Twinkle canon – 50 edo]] by [[http://soonlabel.com/xenharmonic/archives/573|Claudi Meneghin]]
[[http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3|Twinkle canon – 50 edo]] by [[http://soonlabel.com/xenharmonic/archives/573|Claudi Meneghin]]
</pre></div>
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| -4 4 -1 &gt; 21.51 81/80 syntonic comma, Didymus comma
| -8 8 -2 &gt; 43.01 6561/6400 Mathieu superdiesis
| 23 6 -14 &gt; 3.34 1212717/1210381 Vishnu comma
| 1 2 -3 1 &gt; 13.79 126/125 small septimal comma
| -5 2 2 -1 &gt; 7.71 225/224 septimal kleisma
| 6 0 -5 2 &gt; 6.08 3136/3125 middle second comma
| -6 -8 2 5 &gt; 1.12 420175/419904
|-11 2 7 -3 &gt; 1.63 703125/702464
| 11 -10 -10 10 &gt; 5.57 6772805/6751042
|-13 10 0 -1 &gt; 50.72 59049/57344 Harrison's comma
| 2 3 1 -2 -1 &gt; 3.21 540/539 Swets' comma
| -3 4 -2 -2 2 &gt; 0.18 9801/9800 kalisma, Gauss' comma
| 5 -1 3 0 -3 &gt; 3.03 4000/3993 undecimal schisma
| -7 -1 1 1 1 &gt; 4.50 385/384 undecimal kleisma
| 2 -1 0 1 -2 1 &gt; 4.76 364/363
| 2 3 0 -1 1 -2 &gt; 7.30 1188/1183 Kestrel Comma
| 3 0 2 0 1 -3 &gt; 2.36 2200/2197 Parizek comma
| -3 1 1 1 0 -1 &gt; 16.57 105/104 small tridecimal comma
| 3 -2 0 1 -1 -1 0 0 1 &gt; 1.34 1288/1287 triaphonisma&lt;/span&gt;</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;50edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;em&gt;50edo&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 50 equal parts of precisely 24 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. In the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;, it tempers out 81/80, making it a &lt;a class="wiki_link" href="/meantone"&gt;meantone&lt;/a&gt; system, and in that capacity has historically has drawn some notice. In &amp;quot;Harmonics or the Philosophy of Musical Sounds&amp;quot; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the &lt;a class="wiki_link" href="/Target%20tunings"&gt;least squares&lt;/a&gt; tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; extends meantone with a &lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt; which is nearly pure, 50 has a flat 7/4 but both &lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt; and &lt;a class="wiki_link" href="/13_8"&gt;13/8&lt;/a&gt; are nearly pure. &lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;50edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;em&gt;50edo&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 50 equal parts of precisely 24 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. In the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;, it tempers out 81/80, making it a &lt;a class="wiki_link" href="/meantone"&gt;meantone&lt;/a&gt; system, and in that capacity has historically has drawn some notice. In &amp;quot;Harmonics or the Philosophy of Musical Sounds&amp;quot; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the &lt;a class="wiki_link" href="/Target%20tunings"&gt;least squares&lt;/a&gt; tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; extends meantone with a &lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt; which is nearly pure, 50 has a flat 7/4 but both &lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt; and &lt;a class="wiki_link" href="/13_8"&gt;13/8&lt;/a&gt; are nearly pure.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
50 tempers out 126/125 in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt; and 105/104, 144/143 and 196/195 in the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt;, and can be used for even higher limits. Aside from meantone, it can be used to advantage for the 15&amp;amp;50 temperament. It is also the unique equal temperament tempering out both 81/80 and the &lt;a class="wiki_link" href="/vishnuzma"&gt;vishnuzma&lt;/a&gt;, 6115295232/6103515625 = |23 6 -14&amp;gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.&lt;br /&gt;
50 tempers out 126/125 in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt; and 105/104, 144/143 and 196/195 in the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt;, and can be used for even higher limits. Aside from meantone, it can be used to advantage for the 15&amp;amp;50 temperament. It is also the unique equal temperament tempering out both 81/80 and the &lt;a class="wiki_link" href="/vishnuzma"&gt;vishnuzma&lt;/a&gt;, 6115295232/6103515625 = |23 6 -14&amp;gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.archive.org/details/harmonicsorphilo00smit" rel="nofollow"&gt;Robert Smith's book online&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.archive.org/details/harmonicsorphilo00smit" rel="nofollow"&gt;Robert Smith's book online&lt;/a&gt;&lt;br /&gt;
Line 84: Line 124:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x-Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x-Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h2&gt;
  &lt;br /&gt;
   
 


&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
Line 397: Line 436:


&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3" rel="nofollow"&gt;Twinkle canon – 50 edo&lt;/a&gt; by &lt;a class="wiki_link_ext" href="http://soonlabel.com/xenharmonic/archives/573" rel="nofollow"&gt;Claudi Meneghin&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="x-Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Commas&lt;/h2&gt;
50 EDO tempers out the following commas. (Note: This assumes the val &amp;lt; 50 79 116 140 173 185 204 212 226 |, comma values rounded to 2 decimal places.)&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th&gt;&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc3"&gt;&lt;a name="x-Commas-In bra format"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;In bra format&lt;/h3&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc4"&gt;&lt;a name="x-Commas-In cents"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;In cents&lt;/h3&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc5"&gt;&lt;a name="x-Commas-Ratio"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Ratio&lt;/h3&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc6"&gt;&lt;a name="x-Commas-Name 1"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Name 1&lt;/h3&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc7"&gt;&lt;a name="x-Commas-Name2"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Name2&lt;/h3&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| -4 4 -1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;21.51&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;81/80&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Syntonic comma&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Didymus comma&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| -8 8 -2 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;43.01&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;6561/6400&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Mathieu superdiesis&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| 23 6 -14 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;3.34&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1212717/1210381&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Vishnu comma&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| 1 2 -3 1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;13.79&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;126/125&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Small septimal comma&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| -5 2 2 -1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;7.71&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;225/224&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Septimal kleisma&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| 6 0 -5 2 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;6.08&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;3136/3125&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Middle second comma&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| -6 -8 2 5 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;1.12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;420175/419904&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;|-11 2 7 -3 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;1.63&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;703125/702464&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| 11 -10 -10 10 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;5.57&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;6772805/6751042&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;|-13 10 0 -1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;50.72&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;59049/57344&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Harrison's comma&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| 2 3 1 -2 -1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;3.21&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;540/539&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Swets' comma&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| -3 4 -2 -2 2 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;0.18&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;9801/9800&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Kalisma&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Gauss' comma&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| 5 -1 3 0 -3 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;3.03&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;4000/3993&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Undecimal schisma&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| -7 -1 1 1 1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;4.50&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;385/384&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Undecimal kleisma&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| 2 -1 0 1 -2 1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;4.76&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;364/363&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| 2 3 0 -1 1 -2 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;7.30&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1188/1183&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Kestrel Comma&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| 3 0 2 0 1 -3 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;2.36&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;2200/2197&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Parizek comma&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| -3 1 1 1 0 -1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;16.57&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;105/104&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Small tridecimal comma&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;| 3 -2 0 1 -1 -1 0 0 1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: right;"&gt;1.34&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1288/1287&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Triaphonisma&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3" rel="nofollow"&gt;Twinkle canon – 50 edo&lt;/a&gt; by &lt;a class="wiki_link_ext" href="http://soonlabel.com/xenharmonic/archives/573" rel="nofollow"&gt;Claudi Meneghin&lt;/a&gt;&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| -4 4 -1 &amp;gt; 21.51 81/80 syntonic comma, Didymus comma&lt;br /&gt;
| -8 8 -2 &amp;gt; 43.01 6561/6400 Mathieu superdiesis&lt;br /&gt;
| 23 6 -14 &amp;gt; 3.34 1212717/1210381 Vishnu comma&lt;br /&gt;
| 1 2 -3 1 &amp;gt; 13.79 126/125 small septimal comma&lt;br /&gt;
| -5 2 2 -1 &amp;gt; 7.71 225/224 septimal kleisma&lt;br /&gt;
| 6 0 -5 2 &amp;gt; 6.08 3136/3125 middle second comma&lt;br /&gt;
| -6 -8 2 5 &amp;gt; 1.12 420175/419904&lt;br /&gt;
|-11 2 7 -3 &amp;gt; 1.63 703125/702464&lt;br /&gt;
| 11 -10 -10 10 &amp;gt; 5.57 6772805/6751042&lt;br /&gt;
|-13 10 0 -1 &amp;gt; 50.72 59049/57344 Harrison's comma&lt;br /&gt;
| 2 3 1 -2 -1 &amp;gt; 3.21 540/539 Swets' comma&lt;br /&gt;
| -3 4 -2 -2 2 &amp;gt; 0.18 9801/9800 kalisma, Gauss' comma&lt;br /&gt;
| 5 -1 3 0 -3 &amp;gt; 3.03 4000/3993 undecimal schisma&lt;br /&gt;
| -7 -1 1 1 1 &amp;gt; 4.50 385/384 undecimal kleisma&lt;br /&gt;
| 2 -1 0 1 -2 1 &amp;gt; 4.76 364/363&lt;br /&gt;
| 2 3 0 -1 1 -2 &amp;gt; 7.30 1188/1183 Kestrel Comma&lt;br /&gt;
| 3 0 2 0 1 -3 &amp;gt; 2.36 2200/2197 Parizek comma&lt;br /&gt;
| -3 1 1 1 0 -1 &amp;gt; 16.57 105/104 small tridecimal comma&lt;br /&gt;
| 3 -2 0 1 -1 -1 0 0 1 &amp;gt; 1.34 1288/1287 triaphonisma&lt;/span&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>