50edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 491210938 - Original comment: **
Wikispaces>clamengh
**Imported revision 492994218 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2014-02-22 10:58:13 UTC</tt>.<br>
: This revision was by author [[User:clamengh|clamengh]] and made on <tt>2014-03-02 10:34:56 UTC</tt>.<br>
: The original revision id was <tt>491210938</tt>.<br>
: The original revision id was <tt>492994218</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]]
//50edo// divides the [[octave]] into 50 equal parts of precisely 24 [[cent]]s each. In the [[5-limit]], it tempers out 81/80, making it a [[meantone]] system, and in that capacity has historically has drawn some notice. In [[http://lit.gfax.ch/Harmonics%202nd%20Edition%20%28Robert%20Smith%29.pdf|"Harmonics or the Philosophy of Musical Sounds"]] (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the [[Target tunings|least squares]] tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While [[31edo]] extends meantone with a [[7_4|7/4]] which is nearly pure, 50 has a flat 7/4 but both [[11_8|11/8]] and [[13_8|13/8]] are nearly pure.
//50edo// divides the [[octave]] into 50 equal parts of precisely 24 [[cent]]s each. In the [[5-limit]], it tempers out 81/80, making it a [[meantone]] system, and in that capacity has historically has drawn some notice. In [[http://lit.gfax.ch/Harmonics%202nd%20Edition%20%28Robert%20Smith%29.pdf|"Harmonics or the Philosophy of Musical Sounds"]] (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the [[Target tunings|least squares]] tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While [[31edo]] extends meantone with a [[7_4|7/4]] which is nearly pure, 50 has a flat 7/4 but both [[11_8|11/8]] and [[13_8|13/8]] are nearly pure.


Line 15: Line 14:
[[http://www.music.ed.ac.uk/russell/conference/robertsmithkirckman.html|More information about Robert Smith's temperament]]
[[http://www.music.ed.ac.uk/russell/conference/robertsmithkirckman.html|More information about Robert Smith's temperament]]


=Relations=
=Relations=  
The 50-edo system is related to [[7edo]], [[12edo]], [[19edo]], [[31edo]] as the next approximation to the "Golden Tone System" ([[Das Goldene Tonsystem]]) of Thorvald Kornerup.
The 50-edo system is related to [[7edo]], [[12edo]], [[19edo]], [[31edo]] as the next approximation to the "Golden Tone System" ([[Das Goldene Tonsystem]]) of Thorvald Kornerup.


=Intervals=
=Intervals=  
|| Degrees of 50-EDO || Cents value ||
|| Degrees of 50-EDO || Cents value ||
|| 0 || 0 ||
|| 0 || 0 ||
Line 71: Line 70:
|| 49 || 1176 ||
|| 49 || 1176 ||


==Intervals by patent val error==
==Intervals by patent val error==  
|| Interval || Error ||
|| Interval || Error ||
|| 16/13 || 0.528 ||
|| 16/13 || 0.528 ||
Line 126: Line 125:
[[@http://soonlabel.com/xenharmonic/archives/1118|Fantasia Catalana by Claudi Meneghin]]
[[@http://soonlabel.com/xenharmonic/archives/1118|Fantasia Catalana by Claudi Meneghin]]
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| -4 4 -1 &gt; 21.51 81/80 syntonic comma, Didymus comma&lt;/span&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| -4 4 -1 &gt; 21.51 81/80 syntonic comma, Didymus comma&lt;/span&gt;
[[http://soonlabel.com/xenharmonic/archives/1929|Fugue on the Dragnet theme by Claudi Meneghin]]
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| -8 8 -2 &gt; 43.01 6561/6400 Mathieu superdiesis&lt;/span&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| -8 8 -2 &gt; 43.01 6561/6400 Mathieu superdiesis&lt;/span&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 23 6 -14 &gt; 3.34 1212717/1210381 Vishnu comma&lt;/span&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 23 6 -14 &gt; 3.34 1212717/1210381 Vishnu comma&lt;/span&gt;
Line 156: Line 156:
&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#Commas--Name2"&gt;Name2&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#Commas--Name2"&gt;Name2&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;em&gt;50edo&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 50 equal parts of precisely 24 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. In the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;, it tempers out 81/80, making it a &lt;a class="wiki_link" href="/meantone"&gt;meantone&lt;/a&gt; system, and in that capacity has historically has drawn some notice. In &lt;a class="wiki_link_ext" href="http://lit.gfax.ch/Harmonics%202nd%20Edition%20%28Robert%20Smith%29.pdf" rel="nofollow"&gt;&amp;quot;Harmonics or the Philosophy of Musical Sounds&amp;quot;&lt;/a&gt; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the &lt;a class="wiki_link" href="/Target%20tunings"&gt;least squares&lt;/a&gt; tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; extends meantone with a &lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt; which is nearly pure, 50 has a flat 7/4 but both &lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt; and &lt;a class="wiki_link" href="/13_8"&gt;13/8&lt;/a&gt; are nearly pure.&lt;br /&gt;
&lt;em&gt;50edo&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 50 equal parts of precisely 24 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. In the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;, it tempers out 81/80, making it a &lt;a class="wiki_link" href="/meantone"&gt;meantone&lt;/a&gt; system, and in that capacity has historically has drawn some notice. In &lt;a class="wiki_link_ext" href="http://lit.gfax.ch/Harmonics%202nd%20Edition%20%28Robert%20Smith%29.pdf" rel="nofollow"&gt;&amp;quot;Harmonics or the Philosophy of Musical Sounds&amp;quot;&lt;/a&gt; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the &lt;a class="wiki_link" href="/Target%20tunings"&gt;least squares&lt;/a&gt; tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; extends meantone with a &lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt; which is nearly pure, 50 has a flat 7/4 but both &lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt; and &lt;a class="wiki_link" href="/13_8"&gt;13/8&lt;/a&gt; are nearly pure.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
50 tempers out 126/125 in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt; and 105/104, 144/143 and 196/195 in the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt;, and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&amp;amp;50 temperament. It is also the unique equal temperament tempering out both 81/80 and the &lt;a class="wiki_link" href="/vishnuzma"&gt;vishnuzma&lt;/a&gt;, 6115295232/6103515625 = |23 6 -14&amp;gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.&lt;br /&gt;
50 tempers out 126/125 in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt; and 105/104, 144/143 and 196/195 in the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt;, and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&amp;amp;50 temperament. It is also the unique equal temperament tempering out both 81/80 and the &lt;a class="wiki_link" href="/vishnuzma"&gt;vishnuzma&lt;/a&gt;, 6115295232/6103515625 = |23 6 -14&amp;gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.&lt;br /&gt;
Line 165: Line 164:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Relations"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Relations&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Relations"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Relations&lt;/h1&gt;
The 50-edo system is related to &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;, &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;, &lt;a class="wiki_link" href="/19edo"&gt;19edo&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; as the next approximation to the &amp;quot;Golden Tone System&amp;quot; (&lt;a class="wiki_link" href="/Das%20Goldene%20Tonsystem"&gt;Das Goldene Tonsystem&lt;/a&gt;) of Thorvald Kornerup.&lt;br /&gt;
The 50-edo system is related to &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;, &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;, &lt;a class="wiki_link" href="/19edo"&gt;19edo&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; as the next approximation to the &amp;quot;Golden Tone System&amp;quot; (&lt;a class="wiki_link" href="/Das%20Goldene%20Tonsystem"&gt;Das Goldene Tonsystem&lt;/a&gt;) of Thorvald Kornerup.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h1&gt;
 


&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
Line 481: Line 480:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Intervals-Intervals by patent val error"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Intervals by patent val error&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Intervals-Intervals by patent val error"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Intervals by patent val error&lt;/h2&gt;
 


&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
Line 914: Line 913:
&lt;a class="wiki_link_ext" href="http://soonlabel.com/xenharmonic/archives/1118" rel="nofollow" target="_blank"&gt;Fantasia Catalana by Claudi Meneghin&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://soonlabel.com/xenharmonic/archives/1118" rel="nofollow" target="_blank"&gt;Fantasia Catalana by Claudi Meneghin&lt;/a&gt;&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| -4 4 -1 &amp;gt; 21.51 81/80 syntonic comma, Didymus comma&lt;/span&gt;&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| -4 4 -1 &amp;gt; 21.51 81/80 syntonic comma, Didymus comma&lt;/span&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://soonlabel.com/xenharmonic/archives/1929" rel="nofollow"&gt;Fugue on the Dragnet theme by Claudi Meneghin&lt;/a&gt;&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| -8 8 -2 &amp;gt; 43.01 6561/6400 Mathieu superdiesis&lt;/span&gt;&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| -8 8 -2 &amp;gt; 43.01 6561/6400 Mathieu superdiesis&lt;/span&gt;&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 23 6 -14 &amp;gt; 3.34 1212717/1210381 Vishnu comma&lt;/span&gt;&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 23 6 -14 &amp;gt; 3.34 1212717/1210381 Vishnu comma&lt;/span&gt;&lt;br /&gt;