50edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 503334194 - Original comment: **
Wikispaces>spt3125
**Imported revision 503693126 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2014-04-19 16:33:23 UTC</tt>.<br>
: This revision was by author [[User:spt3125|spt3125]] and made on <tt>2014-04-21 21:45:59 UTC</tt>.<br>
: The original revision id was <tt>503334194</tt>.<br>
: The original revision id was <tt>503693126</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]]
//50edo// divides the [[octave]] into 50 equal parts of precisely 24 [[cent]]s each. In the [[5-limit]], it tempers out 81/80, making it a [[meantone]] system, and in that capacity has historically has drawn some notice. In [[http://lit.gfax.ch/Harmonics%202nd%20Edition%20%28Robert%20Smith%29.pdf|"Harmonics or the Philosophy of Musical Sounds"]] (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the [[Target tunings|least squares]] tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While [[31edo]] extends meantone with a [[7_4|7/4]] which is nearly pure, 50 has a flat 7/4 but both [[11_8|11/8]] and [[13_8|13/8]] are nearly pure.
//50edo// divides the [[octave]] into 50 equal parts of precisely 24 [[cent]]s each. In the [[5-limit]], it tempers out 81/80, making it a [[meantone]] system, and in that capacity has historically has drawn some notice. In [[http://lit.gfax.ch/Harmonics%202nd%20Edition%20%28Robert%20Smith%29.pdf|"Harmonics or the Philosophy of Musical Sounds"]] (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later, W.S.B. Woolhouse noted it was fairly close to the [[Target tunings|least squares]] tuning for 5-limit meantone. 50edo, however, is especially interesting from a higher limit point of view. While [[31edo]] extends meantone with a [[7_4|7/4]] which is nearly pure, 50 has a flat 7/4 but both [[11_8|11/8]] and [[13_8|13/8]] are nearly pure.


50 tempers out 126/125, 225/224 and 3136/3125 in the [[7-limit]], indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the [[11-limit]] and 105/104, 144/143 and 196/195 in the [[13-limit]], and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&amp;50 temperament ([[http://x31eq.com/cgi-bin/rt.cgi?ets=15%2650&amp;limit=11|Coblack]]). It is also the unique equal temperament tempering out both 81/80 and the [[vishnuzma]], 6115295232/6103515625 = |23 6 -14&gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.
50 tempers out 126/125, 225/224 and 3136/3125 in the [[7-limit]], indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the [[11-limit]] and 105/104, 144/143 and 196/195 in the [[13-limit]], and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&amp;50 temperament ([[http://x31eq.com/cgi-bin/rt.cgi?ets=15%2650&amp;limit=11|Coblack]]). It is also the unique equal temperament tempering out both 81/80 and the [[vishnuzma]], 6115295232/6103515625 = |23 6 -14&gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.


[[http://www.archive.org/details/harmonicsorphilo00smit|Robert Smith's book online]]
[[http://www.archive.org/details/harmonicsorphilo00smit|Robert Smith's book online]]
Line 30: Line 30:
|| 9 || 216 || 25/22 || [[http://x31eq.com/cgi-bin/rt.cgi?ets=50%2661p&amp;limit=2.3.5.11.13|Tremka]] ||
|| 9 || 216 || 25/22 || [[http://x31eq.com/cgi-bin/rt.cgi?ets=50%2661p&amp;limit=2.3.5.11.13|Tremka]] ||
|| 10 || 240 || 8/7, 15/13 ||  ||
|| 10 || 240 || 8/7, 15/13 ||  ||
|| 11 || 264 || 7/6 ||   ||
|| 11 || 264 || 7/6 || [[Marvel temperaments#Septimin|Septimin]] ||
|| 12 || 288 || 13/11 ||  ||
|| 12 || 288 || 13/11 ||  ||
|| 13 || 312 || 6/5 ||  ||
|| 13 || 312 || 6/5 ||  ||
Line 98: Line 98:


=Commas=  
=Commas=  
50 EDO tempers out the following commas. (Note: This assumes the val &lt; 50 79 116 140 173 185 204 212 226 |, comma values rounded to 2 decimal places.) This list is not all-inclusive, and is based on the interval table from Scala version 2.2.
50 EDO tempers out the following commas. (Note: This assumes the val &lt; 50 79 116 140 173 185 204 212 226 |, comma values in cents orunded to 2 decimal places.) This list is not all-inclusive, and is based on the interval table from Scala version 2.2.
||~ ===In ket format=== ||~ ===In cents=== ||~ ===Ratio=== ||~ ===Name 1=== ||~ ===Name2=== ||
||~ Monzo ||~ Cents ||~ Ratio ||~ Name 1 ||~ Name 2 ||
|| | -4 4 -1 &gt; ||&gt; 21.51 ||= 81/80 || Syntonic comma || Didymus comma ||
|| | -4 4 -1 &gt; ||&gt; 21.51 ||= 81/80 || Syntonic comma || Didymus comma ||
|| | 23 6 -14 &gt; ||&gt; 3.34 ||= 6115295232/6103515625 || Vishnu comma ||  ||
|| | 23 6 -14 &gt; ||&gt; 3.34 ||= 6115295232/6103515625 || Vishnu comma ||  ||
Line 129: Line 129:
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 23 6 -14 &gt; 3.34 1212717/1210381 Vishnu comma&lt;/span&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 23 6 -14 &gt; 3.34 1212717/1210381 Vishnu comma&lt;/span&gt;
[[https://www.dropbox.com/sh/4x81rzpkot32qzk/MQ3cJljjkh|50EDO Theory - Intervals, Chords and Scales in 50EDO by Cam Taylor]]
[[https://www.dropbox.com/sh/4x81rzpkot32qzk/MQ3cJljjkh|50EDO Theory - Intervals, Chords and Scales in 50EDO by Cam Taylor]]
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 1 2 -3 1 &gt; 13.79 126/125 small septimal comma&lt;/span&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 1 2 -3 1 &gt; 13.79 126/125 small septimal comma&lt;/span&gt;&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| -5 2 2 -1 &gt; 7.71 225/224 septimal kleisma&lt;/span&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| -5 2 2 -1 &gt; 7.71 225/224 septimal kleisma&lt;/span&gt;
[[http://iamcamtaylor.wordpress.com/|iamcamtaylor - Blog on 50EDO and extended meantone theory by Cam Taylor]]
[[http://iamcamtaylor.wordpress.com/|iamcamtaylor - Blog on 50EDO and extended meantone theory by Cam Taylor]]
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 6 0 -5 2 &gt; 6.08 3136/3125 middle second comma&lt;/span&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 6 0 -5 2 &gt; 6.08 3136/3125 middle second comma&lt;/span&gt;
Line 147: Line 146:
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 3 -2 0 1 -1 -1 0 0 1 &gt; 1.34 1288/1287 triaphonisma&lt;/span&gt;</pre></div>
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 3 -2 0 1 -1 -1 0 0 1 &gt; 1.34 1288/1287 triaphonisma&lt;/span&gt;</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;50edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:18:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Relations"&gt;Relations&lt;/a&gt;&lt;/div&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;50edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:8:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:8 --&gt;&lt;!-- ws:start:WikiTextTocRule:9: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Relations"&gt;Relations&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Intervals"&gt;Intervals&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:9 --&gt;&lt;!-- ws:start:WikiTextTocRule:10: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Intervals"&gt;Intervals&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Intervals-Intervals by patent val error"&gt;Intervals by patent val error&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Intervals-Intervals by patent val error"&gt;Intervals by patent val error&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Commas"&gt;Commas&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Commas"&gt;Commas&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;!-- ws:start:WikiTextTocRule:23: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#Commas--In ket format"&gt;In ket format&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:23 --&gt;&lt;!-- ws:start:WikiTextTocRule:24: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#Commas--In cents"&gt;In cents&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;em&gt;50edo&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 50 equal parts of precisely 24 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. In the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;, it tempers out 81/80, making it a &lt;a class="wiki_link" href="/meantone"&gt;meantone&lt;/a&gt; system, and in that capacity has historically has drawn some notice. In &lt;a class="wiki_link_ext" href="http://lit.gfax.ch/Harmonics%202nd%20Edition%20%28Robert%20Smith%29.pdf" rel="nofollow"&gt;&amp;quot;Harmonics or the Philosophy of Musical Sounds&amp;quot;&lt;/a&gt; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later, W.S.B. Woolhouse noted it was fairly close to the &lt;a class="wiki_link" href="/Target%20tunings"&gt;least squares&lt;/a&gt; tuning for 5-limit meantone. 50edo, however, is especially interesting from a higher limit point of view. While &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; extends meantone with a &lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt; which is nearly pure, 50 has a flat 7/4 but both &lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt; and &lt;a class="wiki_link" href="/13_8"&gt;13/8&lt;/a&gt; are nearly pure.&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#Commas--Ratio"&gt;Ratio&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;!-- ws:start:WikiTextTocRule:26: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#Commas--Name 1"&gt;Name 1&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#Commas--Name2"&gt;Name2&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;em&gt;50edo&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 50 equal parts of precisely 24 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. In the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;, it tempers out 81/80, making it a &lt;a class="wiki_link" href="/meantone"&gt;meantone&lt;/a&gt; system, and in that capacity has historically has drawn some notice. In &lt;a class="wiki_link_ext" href="http://lit.gfax.ch/Harmonics%202nd%20Edition%20%28Robert%20Smith%29.pdf" rel="nofollow"&gt;&amp;quot;Harmonics or the Philosophy of Musical Sounds&amp;quot;&lt;/a&gt; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the &lt;a class="wiki_link" href="/Target%20tunings"&gt;least squares&lt;/a&gt; tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; extends meantone with a &lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt; which is nearly pure, 50 has a flat 7/4 but both &lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt; and &lt;a class="wiki_link" href="/13_8"&gt;13/8&lt;/a&gt; are nearly pure.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
50 tempers out 126/125, 225/224 and 3136/3125 in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt; and 105/104, 144/143 and 196/195 in the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt;, and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&amp;amp;50 temperament (&lt;a class="wiki_link_ext" href="http://x31eq.com/cgi-bin/rt.cgi?ets=15%2650&amp;amp;limit=11" rel="nofollow"&gt;Coblack&lt;/a&gt;). It is also the unique equal temperament tempering out both 81/80 and the &lt;a class="wiki_link" href="/vishnuzma"&gt;vishnuzma&lt;/a&gt;, 6115295232/6103515625 = |23 6 -14&amp;gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.&lt;br /&gt;
50 tempers out 126/125, 225/224 and 3136/3125 in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt; and 105/104, 144/143 and 196/195 in the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt;, and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&amp;amp;50 temperament (&lt;a class="wiki_link_ext" href="http://x31eq.com/cgi-bin/rt.cgi?ets=15%2650&amp;amp;limit=11" rel="nofollow"&gt;Coblack&lt;/a&gt;). It is also the unique equal temperament tempering out both 81/80 and the &lt;a class="wiki_link" href="/vishnuzma"&gt;vishnuzma&lt;/a&gt;, 6115295232/6103515625 = |23 6 -14&amp;gt;, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.archive.org/details/harmonicsorphilo00smit" rel="nofollow"&gt;Robert Smith's book online&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.archive.org/details/harmonicsorphilo00smit" rel="nofollow"&gt;Robert Smith's book online&lt;/a&gt;&lt;br /&gt;
Line 298: Line 292:
         &lt;td&gt;7/6&lt;br /&gt;
         &lt;td&gt;7/6&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Marvel%20temperaments#Septimin"&gt;Septimin&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 842: Line 836:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Commas&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Commas&lt;/h1&gt;
  50 EDO tempers out the following commas. (Note: This assumes the val &amp;lt; 50 79 116 140 173 185 204 212 226 |, comma values rounded to 2 decimal places.) This list is not all-inclusive, and is based on the interval table from Scala version 2.2.&lt;br /&gt;
  50 EDO tempers out the following commas. (Note: This assumes the val &amp;lt; 50 79 116 140 173 185 204 212 226 |, comma values in cents orunded to 2 decimal places.) This list is not all-inclusive, and is based on the interval table from Scala version 2.2.&lt;br /&gt;




&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th&gt;&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc4"&gt;&lt;a name="Commas--In ket format"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;In ket format&lt;/h3&gt;
         &lt;th&gt;Monzo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc5"&gt;&lt;a name="Commas--In cents"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;In cents&lt;/h3&gt;
         &lt;th&gt;Cents&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc6"&gt;&lt;a name="Commas--Ratio"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Ratio&lt;/h3&gt;
         &lt;th&gt;Ratio&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc7"&gt;&lt;a name="Commas--Name 1"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Name 1&lt;/h3&gt;
         &lt;th&gt;Name 1&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc8"&gt;&lt;a name="Commas--Name2"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Name2&lt;/h3&gt;
         &lt;th&gt;Name 2&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,122: Line 1,116:
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 23 6 -14 &amp;gt; 3.34 1212717/1210381 Vishnu comma&lt;/span&gt;&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 23 6 -14 &amp;gt; 3.34 1212717/1210381 Vishnu comma&lt;/span&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="https://www.dropbox.com/sh/4x81rzpkot32qzk/MQ3cJljjkh" rel="nofollow"&gt;50EDO Theory - Intervals, Chords and Scales in 50EDO by Cam Taylor&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="https://www.dropbox.com/sh/4x81rzpkot32qzk/MQ3cJljjkh" rel="nofollow"&gt;50EDO Theory - Intervals, Chords and Scales in 50EDO by Cam Taylor&lt;/a&gt;&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 1 2 -3 1 &amp;gt; 13.79 126/125 small septimal comma&lt;/span&gt;&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 1 2 -3 1 &amp;gt; 13.79 126/125 small septimal comma&lt;/span&gt;&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| -5 2 2 -1 &amp;gt; 7.71 225/224 septimal kleisma&lt;/span&gt;&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| -5 2 2 -1 &amp;gt; 7.71 225/224 septimal kleisma&lt;/span&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://iamcamtaylor.wordpress.com/" rel="nofollow"&gt;iamcamtaylor - Blog on 50EDO and extended meantone theory by Cam Taylor&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://iamcamtaylor.wordpress.com/" rel="nofollow"&gt;iamcamtaylor - Blog on 50EDO and extended meantone theory by Cam Taylor&lt;/a&gt;&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 6 0 -5 2 &amp;gt; 6.08 3136/3125 middle second comma&lt;/span&gt;&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"&gt;| 6 0 -5 2 &amp;gt; 6.08 3136/3125 middle second comma&lt;/span&gt;&lt;br /&gt;