37edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 243509555 - Original comment: **
Wikispaces>Sarzadoce
**Imported revision 243514701 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-07-30 12:04:07 UTC</tt>.<br>
: This revision was by author [[User:Sarzadoce|Sarzadoce]] and made on <tt>2011-07-30 13:09:25 UTC</tt>.<br>
: The original revision id was <tt>243509555</tt>.<br>
: The original revision id was <tt>243514701</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">37edo is the scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. Using its best (and sharp) fifth, it tempers out 250/243, making it a [[Porcupine family|porcupine temperament]] tuning. Using its alternative flat fifth, it tempers out 16875/16384, making it a negri tuning. It also tempers out 2187/2000, giving a temperament where three minor whole tones make up a fifth.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. Using its best (and sharp) fifth, it tempers out 250/243, making it a variant of [[Porcupine family|porcupine temperament]]. Using its alternative flat fifth, it tempers out 16875/16384, making it a negri tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth.


[[toc|flat]]
[[toc|flat]]
Line 36: Line 36:
"minor third" = 8\37 = 259.5 cents
"minor third" = 8\37 = 259.5 cents
"major third" = 14\37 = 454.1 cents
"major third" = 14\37 = 454.1 cents
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variety of [[The Biosphere|Biome]] temperament.
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of [[The Biosphere|Biome]] temperament.


37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions.
37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions.
Line 87: Line 87:
[[roulette19]]</pre></div>
[[roulette19]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;37edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;37edo is the scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. Using its best (and sharp) fifth, it tempers out 250/243, making it a &lt;a class="wiki_link" href="/Porcupine%20family"&gt;porcupine temperament&lt;/a&gt; tuning. Using its alternative flat fifth, it tempers out 16875/16384, making it a negri tuning. It also tempers out 2187/2000, giving a temperament where three minor whole tones make up a fifth.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;37edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. Using its best (and sharp) fifth, it tempers out 250/243, making it a variant of &lt;a class="wiki_link" href="/Porcupine%20family"&gt;porcupine temperament&lt;/a&gt;. Using its alternative flat fifth, it tempers out 16875/16384, making it a negri tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextTocRule:8:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:8 --&gt;&lt;!-- ws:start:WikiTextTocRule:9: --&gt;&lt;a href="#Subgroups"&gt;Subgroups&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:9 --&gt;&lt;!-- ws:start:WikiTextTocRule:10: --&gt; | &lt;a href="#The Two Fifths"&gt;The Two Fifths&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt; | &lt;a href="#Intervals"&gt;Intervals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#Scales"&gt;Scales&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;
&lt;!-- ws:start:WikiTextTocRule:8:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:8 --&gt;&lt;!-- ws:start:WikiTextTocRule:9: --&gt;&lt;a href="#Subgroups"&gt;Subgroups&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:9 --&gt;&lt;!-- ws:start:WikiTextTocRule:10: --&gt; | &lt;a href="#The Two Fifths"&gt;The Two Fifths&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt; | &lt;a href="#Intervals"&gt;Intervals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#Scales"&gt;Scales&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;
Line 117: Line 117:
&amp;quot;minor third&amp;quot; = 8\37 = 259.5 cents&lt;br /&gt;
&amp;quot;minor third&amp;quot; = 8\37 = 259.5 cents&lt;br /&gt;
&amp;quot;major third&amp;quot; = 14\37 = 454.1 cents&lt;br /&gt;
&amp;quot;major third&amp;quot; = 14\37 = 454.1 cents&lt;br /&gt;
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variety of &lt;a class="wiki_link" href="/The%20Biosphere"&gt;Biome&lt;/a&gt; temperament.&lt;br /&gt;
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of &lt;a class="wiki_link" href="/The%20Biosphere"&gt;Biome&lt;/a&gt; temperament.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions.&lt;br /&gt;
37edo has great potential as a xenharmonic system, which high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions.&lt;br /&gt;