Douglas Blumeyer's RTT How-To: Difference between revisions

Cmloegcmluin (talk | contribs)
consistent hyphenation of "generator-count vector"
Cmloegcmluin (talk | contribs)
remove units and vars table for now until consensus achieved
Line 1,158: Line 1,158:
|monzo
|monzo
|}
|}
The following table gives the names, units, dimensions, recommended single-letter variable names, and other helpful information about the objects that come together in RTT take us from intervals to tuned pitches in the temperament.
Note that units are given here in a plain font, scalars are italic, vectors are bold, and matrices are capital italic, as per convention.
{| class="wikitable"
|+ '''Table 3.''' RTT units, dimensions, variables
! colspan="3" |variable
! rowspan="2" |name
! colspan="3" |units
! colspan="2" |dimensions
! rowspan="2" |type
! rowspan="2" |[[variance|<math>v</math>]]
|-
!unreduced
!red.
![[RTT library in Wolfram Language|Wolfram library]]
!unreduced
!red.
!read as
!unreduced
!red.
|-
|
|<math>\textbf{i}</math>
|<code>i</code>
|[[Prime-count vector|interval]]
|
|<math>\text{p}</math>
|primes
|
|<math>d\!×\!1</math>
|vector
|contra
|-
|
|<math>M</math>
|<code>m</code>
|[[Mapping|(temperament) mapping]]
|
|<math>\large{{}^\text{g}{\mskip -5mu/\mskip -3mu}_\text{p}}</math>
|generators per prime
|
|<math>r\!×\!d</math>
|matrix
|co
|-
|<math>M.\textbf{i}</math>
|<math>M\textbf{i}</math>
|<code>mi</code>
|[[Tmonzos_and_tvals|mapped interval]]
|<math>\large{}{}^\text{g}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{p}}}·\!\normalsize{}\cancel{\text{p}}</math>
|<math>\text{g}</math>
|generators
|<math>\small{}(r\!×\!\!\cancel{d}\!)(\!\cancel{d}\!\!×\!1)</math>
|<math>r\!×\!1</math>
|vector
|contra
|-
|
|<math>G</math>
|<code>g</code>
|[[Tenney-Euclidean_tuning#Computing_TE_tuning_using_pseudoinverse|generators (matrix)]]
|
|<math>\large{}{}^\text{p}{\mskip -5mu/\mskip -3mu}_\text{g}</math>
|primes per generator
|
|<math>d\!×\!r</math>
|matrix
|contra
|-
|<math>G.M</math>
|<math>P</math>
|<code>p</code>
|[[Projection matrix|(tuning) projection (matrix)]]
|<math>\large{}{}^{\text{p}}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{g}}}\!·\!{}^{\cancel{\text{g}}\!}{\mskip -5mu/\mskip -3mu}_{\text{p}}</math>
|<math>\large{}{}^\text{p}{\mskip -5mu/\mskip -3mu}_\text{p}</math>
|primes per prime
|<math>\small{}(d\!×\!\!\cancel{r}\!)(\!\cancel{r}\!\!×\!d)</math>
|<math>d\!×\!d</math>
|matrix
|
|-
|<math>G.M.\textbf{i}</math><br><math>P.\textbf{i}</math>
|<math>P\textbf{i}</math>
|<code>pi</code>
|projected interval
|<math>\large{}{}^{\text{p}}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{g}}}\!·\!{}^{\cancel{\text{g}}\!}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{p}}}\!·\!\normalsize{}\cancel{\text{p}}</math>
|<math>\text{p}</math>
|primes
|<math>\small{}(d\!×\!\!\cancel{r}\!)(\!\cancel{r}\!\!×\!\!\cancel{d}\!)(\!\cancel{d}\!\!×\!1)</math>
|<math>d\!×\!1</math>
|vector
|contra
|-
|
|<math>\textbf{p}</math>
|<code>ptm</code>
|[[JIP|prime tuning map]]
|
|<math>\large{}{}^\text{oct}{\mskip -5mu/\mskip -3mu}_\text{p}</math>
|octaves per prime
|
|<math>1\!×\!d</math>
|vector
|co
|-
|<math>\textbf{p}.G</math>
|<math>\textbf{g}</math>
|<code>gtm</code>
|[[generator tuning map]]
|<math>\large{}{}^\text{oct}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{p}}}\!·\!{}^{\cancel{\text{p}}\!}{\mskip -5mu/\mskip -3mu}_\text{g}</math>
|<math>\large{}{}^\text{oct}{\mskip -5mu/\mskip -3mu}_\text{g}</math>
|octaves per generator
|<math>\small{}(1\!×\!\!\cancel{d}\!)(\!\cancel{d}\!\!×\!r)</math>
|<math>1\!×\!r</math>
|vector
|co
|-
|<math>\textbf{p}.G.M</math><br><math>\textbf{p}.P</math><br><math>\textbf{g}.M</math>
|<math>\textbf{t}</math>
|<code>tm</code>
|[[tuning map|(temperament) tuning map]]
|<math>\large{}{}^\text{oct}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{p}}}\!·\!{}^{\cancel{\text{p}}\!}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{g}}}\!·\!{}^{\cancel{\text{g}}\!}{\mskip -5mu/\mskip -3mu}_\text{p}</math>
|<math>\large{}{}^\text{oct}{\mskip -5mu/\mskip -3mu}_\text{p}</math>
|octaves per prime
|<math>\small{}(1\!×\!\!\cancel{d}\!)(\!\cancel{d}\!\!×\!\!\cancel{r}\!)(\!\cancel{r}\!\!×\!d)</math>
|<math>1\!×\!d</math>
|vector
|co
|-
|<math>\textbf{p}.G.M.\textbf{i}</math><br><math>\textbf{p}.P.\textbf{i}</math><br><math>\textbf{g}.M.\textbf{i}</math>
|<math>\textbf{t}\textbf{i}</math>
|<code>ti</code>
|tuned interval
|<math>\large{}{}^\text{oct}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{p}}}\!·\!{}^{\cancel{\text{p}}\!}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{g}}}\!·\!{}^{\cancel{\text{g}}\!}{\mskip -5mu/\mskip -3mu}_{\!\!\cancel{\text{p}}}\!·\!\normalsize{}\cancel{\text{p}}</math>
|<math>\text{oct}</math>
|octaves
|<math>\small{}(1\!×\!\!\cancel{d}\!)(\!\cancel{d}\!\!×\!\!\cancel{r}\!)(\!\cancel{r}\!\!×\!\!\cancel{d}\!)(\!\cancel{d}\!\!×\!1)</math>
|<math>1\!×\!1</math>
|vector
|
|-
|
|<math>C</math>
|<code>c</code>
|[[comma basis]]
|
|<math>\text{p}</math>
|primes
|
|<math>d\!×\!n</math>
|matrix
|contra
|-
|
|<math>1200</math>
|
|octaves-to-cents conversion
|
|<math>\large{}{}^\text{c}{\mskip -5mu/\mskip -3mu}_\text{oct}</math>
|cents per octave
|
|<math>1\!×\!1</math>
|scalar
|
|-
|
|<math>T</math>
|<code>t</code>
|[[regular temperament|temperament]]
|
|
|
|
|
|
|
|-
|
|<math>d</math>
|<code>d</code>
|[[dimensionality]]
|
|
|
|
|<math>1\!×\!1</math>
|scalar
|
|-
|
|<math>r</math>
|<code>r</code>
|[[rank]]
|
|
|
|
|<math>1\!×\!1</math>
|scalar
|
|-
|
|<math>n</math>
|<code>n</code>
|[[nullity]]
|
|
|
|
|<math>1\!×\!1</math>
|scalar
|
|-
|
|<math>v</math>
|<code>v</code>
|[[variance]]
|
|
|
|
|
|
|
|-
|
|<math>\text{g}</math>
|
|generators
|
|
|
|
|
|units
|
|-
|
|<math>\text{p}</math>
|
|primes
|
|
|
|
|
|units
|
|-
|
|<math>\text{oct}</math>
|
|octaves
|
|
|
|
|
|units
|
|-
|
|<math>\text{c}</math>
|
|cents
|
|
|
|
|
|units
|
|}
== Example ==
So, let's look at the example of ¼-comma meantone it is. Our four atomic objects are:
* example interval, <math>\textbf{i}</math>: {{vector|-1 1 0}}
* mapping, <math>M</math>: {{ket|{{map|1 1 0}} {{map|0 1 4}}}}
* generators, <math>G</math>: {{bra|{{vector|1 0 0}} {{vector|0 0 ¼}}}}
* prime tuning map, <math>\textbf{p}</math>: 1200{{map|log₂2 log₂3 log₂5}} = {{map|1200.000 1901.955 2786.314}}
And so the various possible compositions of these objects are:
* generator tuning map, <math>\textbf{p}.G = \textbf{g}</math>: {{map|1200.000 696.578}}
* mapped interval, <math>M\textbf{i}</math>: [0 1}
* tuning map, <math>\textbf{p}.G.M = \textbf{t}</math>: {{map|1200.000 1896.58 2786.31}}
* projection matrix, <math>G.M = P</math>: [[1 1 0] [0 0 0] [0 ¼ 1]]
* projected interval: <math>G.M.\textbf{i} = P\textbf{i}</math>: {{vector|0 0 ¼}}
And the ultimate output is <math>\textbf{t}\textbf{i}</math>, which is 0.580. That multiplied by 1200 gives 696.578, the cents of ¼-comma meantone's fifth, which was the example interval we chose.


= Outro =
= Outro =