Comma basis: Difference between revisions
Cmloegcmluin (talk | contribs) single-row mapping -> map |
Cmloegcmluin (talk | contribs) consolidate categories |
||
Line 15: | Line 15: | ||
To reverse the null-space operation, that is, to find a mapping from a comma basis, you can also use the null-space operation; the relationship between a matrix and its null-space essentially works both ways. However, math libraries' null-space operation is designed to work for mappings, and so if you want correct results, you must transform the basis for the null-space into a mapping-like form, perform the null-space operation, and then undo the initial transformation. This initial transformation you must do and undo is called the anti-transpose, which is just like the typical transpose of a matrix, except instead of reflecting the matrix's values across the main diagonal (starting from either the top-left or bottom-right corner), you reflect them across the anti-diagonal (starting from either the top-right or bottom-left corner). You can remember this because most mappings and comma bases have zeroes in the bottom-left corner, and you want to keep them there; some kind of transpose is necessary to convert the constituent comma vectors columns of the comma basis into rows as if they were constituent generator maps (rows) of a mapping, but a normal transpose of the comma basis would flip its zeroes into the top-right corner instead. | To reverse the null-space operation, that is, to find a mapping from a comma basis, you can also use the null-space operation; the relationship between a matrix and its null-space essentially works both ways. However, math libraries' null-space operation is designed to work for mappings, and so if you want correct results, you must transform the basis for the null-space into a mapping-like form, perform the null-space operation, and then undo the initial transformation. This initial transformation you must do and undo is called the anti-transpose, which is just like the typical transpose of a matrix, except instead of reflecting the matrix's values across the main diagonal (starting from either the top-left or bottom-right corner), you reflect them across the anti-diagonal (starting from either the top-right or bottom-left corner). You can remember this because most mappings and comma bases have zeroes in the bottom-left corner, and you want to keep them there; some kind of transpose is necessary to convert the constituent comma vectors columns of the comma basis into rows as if they were constituent generator maps (rows) of a mapping, but a normal transpose of the comma basis would flip its zeroes into the top-right corner instead. | ||
[[Category:Regular temperament theory]] | [[Category:Regular temperament theory]] | ||
[[Category:Terms]] | [[Category:Terms]] | ||
[[Category:Math]] | [[Category:Math]] | ||
[[Category:Monzo]] | [[Category:Monzo]] |