Comma basis: Difference between revisions

Cmloegcmluin (talk | contribs)
m With respect to the mapping: add link to learn more about null-space finding
Cmloegcmluin (talk | contribs)
add categories
Line 15: Line 15:
To reverse the null-space operation, that is, to find a mapping from a comma basis, you can also use the null-space operation; the relationship between a matrix and its null-space essentially works both ways. However, math libraries' null-space operation is designed to work for mappings, and so if you want correct results, you must transform the basis for the null-space into a mapping-like form, perform the null-space operation, and then undo the initial transformation. This initial transformation you must do and undo is called the anti-transpose, which is just like the typical transpose of a matrix, except instead of reflecting the matrix's values across the main diagonal (starting from either the top-left or bottom-right corner), you reflect them across the anti-diagonal (starting from either the top-right or bottom-left corner). You can remember this because most mappings and comma bases have zeroes in the bottom-left corner, and you want to keep them there; some kind of transpose is necessary to convert the constituent comma vectors columns of the comma basis into rows as if they were constituent generator mapping rows of a mapping, but a normal transpose of the comma basis would flip its zeroes into the top-right corner instead.
To reverse the null-space operation, that is, to find a mapping from a comma basis, you can also use the null-space operation; the relationship between a matrix and its null-space essentially works both ways. However, math libraries' null-space operation is designed to work for mappings, and so if you want correct results, you must transform the basis for the null-space into a mapping-like form, perform the null-space operation, and then undo the initial transformation. This initial transformation you must do and undo is called the anti-transpose, which is just like the typical transpose of a matrix, except instead of reflecting the matrix's values across the main diagonal (starting from either the top-left or bottom-right corner), you reflect them across the anti-diagonal (starting from either the top-right or bottom-left corner). You can remember this because most mappings and comma bases have zeroes in the bottom-left corner, and you want to keep them there; some kind of transpose is necessary to convert the constituent comma vectors columns of the comma basis into rows as if they were constituent generator mapping rows of a mapping, but a normal transpose of the comma basis would flip its zeroes into the top-right corner instead.


[[Category:Temperament]]
[[Category:Regular temperament theory]]
[[Category:Regular temperament theory]]
[[Category:Theory]]
[[Category:Terms]]
[[Category:Math]]
[[Category:Monzo]]
[[Category:Monzo]]