33ed4: Difference between revisions

Wikispaces>jauernig
**Imported revision 536807712 - Original comment: **
Wikispaces>jauernig
**Imported revision 536807766 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:jauernig|jauernig]] and made on <tt>2015-01-09 19:15:15 UTC</tt>.<br>
: This revision was by author [[User:jauernig|jauernig]] and made on <tt>2015-01-09 19:17:30 UTC</tt>.<br>
: The original revision id was <tt>536807712</tt>.<br>
: The original revision id was <tt>536807766</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**33ed4** is the [[ED4|Equal Divisions of the Double Octave]] into 33 narrow chromatic semitones each of 72.727 [[xenharmonic/cent|cent]]s. It takes out every second step of [[33edo]] and falls between [[16edo]] and [[17edo]]. So even degree 16 or degree 17 can play the role of the [[octave]], depending on the actual melodic or harmonic situation in a given composition. So it can be seen as a kind of &lt;span style="color: #00cc00;"&gt;equivocal tuning&lt;/span&gt;.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**33ed4** is the [[ED4|Equal Divisions of the Double Octave]] into 33 narrow chromatic semitones each of 72.727 [[xenharmonic/cent|cent]]s. It takes out every second step of [[33edo]] and falls between [[16edo]] and [[17edo]]. So even degree 16 or degree 17 can play the role of the [[octave]], depending on the actual melodic or harmonic situation in a given composition. So it can be seen as a kind of &lt;span style="color: #00cc00;"&gt;equivocal tuning&lt;/span&gt;.


It has a [[9_5|9/5]] which is 0.6 cents sharp, a [[7_5|7/5]] which is 0.7 cents flat, and a [[9_7|9/7]] which is 1.3 cents sharp. Therefore it is closely related to [[13edt]], the [[Bohlen-Pierce]] scale, although it has no pure [[3_1|3/1]], which is 11.1 cents flat.
It has a [[9_5|9/5]] which is 0.6 cents sharp, a [[7_5|7/5]] which is 0.7 cents flat, and a [[9_7|9/7]] which is 1.3 cents sharp. Therefore it is closely related to [[13edt]], the [[Bohlen-Pierce]] scale, although it has no pure [[3_1|3/1]], which is 11.1 cents flat. The lack of a [[3_2|pure fifth]] makes it also interesting.


Furthermore it has some [[11-limit]], [[13-limit]], [[17-limit]] and even [[23-limit]] which are very close (most of them under or nearby 1 cent).
Furthermore it has some [[11-limit]], [[13-limit]], [[17-limit]] and even [[23-limit]] which are very close (most of them under or nearby 1 cent).
Line 55: Line 55:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;33ed4&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;33ed4&lt;/strong&gt; is the &lt;a class="wiki_link" href="/ED4"&gt;Equal Divisions of the Double Octave&lt;/a&gt; into 33 narrow chromatic semitones each of 72.727 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;cent&lt;/a&gt;s. It takes out every second step of &lt;a class="wiki_link" href="/33edo"&gt;33edo&lt;/a&gt; and falls between &lt;a class="wiki_link" href="/16edo"&gt;16edo&lt;/a&gt; and &lt;a class="wiki_link" href="/17edo"&gt;17edo&lt;/a&gt;. So even degree 16 or degree 17 can play the role of the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt;, depending on the actual melodic or harmonic situation in a given composition. So it can be seen as a kind of &lt;span style="color: #00cc00;"&gt;equivocal tuning&lt;/span&gt;.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;33ed4&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;33ed4&lt;/strong&gt; is the &lt;a class="wiki_link" href="/ED4"&gt;Equal Divisions of the Double Octave&lt;/a&gt; into 33 narrow chromatic semitones each of 72.727 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;cent&lt;/a&gt;s. It takes out every second step of &lt;a class="wiki_link" href="/33edo"&gt;33edo&lt;/a&gt; and falls between &lt;a class="wiki_link" href="/16edo"&gt;16edo&lt;/a&gt; and &lt;a class="wiki_link" href="/17edo"&gt;17edo&lt;/a&gt;. So even degree 16 or degree 17 can play the role of the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt;, depending on the actual melodic or harmonic situation in a given composition. So it can be seen as a kind of &lt;span style="color: #00cc00;"&gt;equivocal tuning&lt;/span&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
It has a &lt;a class="wiki_link" href="/9_5"&gt;9/5&lt;/a&gt; which is 0.6 cents sharp, a &lt;a class="wiki_link" href="/7_5"&gt;7/5&lt;/a&gt; which is 0.7 cents flat, and a &lt;a class="wiki_link" href="/9_7"&gt;9/7&lt;/a&gt; which is 1.3 cents sharp. Therefore it is closely related to &lt;a class="wiki_link" href="/13edt"&gt;13edt&lt;/a&gt;, the &lt;a class="wiki_link" href="/Bohlen-Pierce"&gt;Bohlen-Pierce&lt;/a&gt; scale, although it has no pure &lt;a class="wiki_link" href="/3_1"&gt;3/1&lt;/a&gt;, which is 11.1 cents flat.&lt;br /&gt;
It has a &lt;a class="wiki_link" href="/9_5"&gt;9/5&lt;/a&gt; which is 0.6 cents sharp, a &lt;a class="wiki_link" href="/7_5"&gt;7/5&lt;/a&gt; which is 0.7 cents flat, and a &lt;a class="wiki_link" href="/9_7"&gt;9/7&lt;/a&gt; which is 1.3 cents sharp. Therefore it is closely related to &lt;a class="wiki_link" href="/13edt"&gt;13edt&lt;/a&gt;, the &lt;a class="wiki_link" href="/Bohlen-Pierce"&gt;Bohlen-Pierce&lt;/a&gt; scale, although it has no pure &lt;a class="wiki_link" href="/3_1"&gt;3/1&lt;/a&gt;, which is 11.1 cents flat. The lack of a &lt;a class="wiki_link" href="/3_2"&gt;pure fifth&lt;/a&gt; makes it also interesting.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Furthermore it has some &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;, &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt;, &lt;a class="wiki_link" href="/17-limit"&gt;17-limit&lt;/a&gt; and even &lt;a class="wiki_link" href="/23-limit"&gt;23-limit&lt;/a&gt; which are very close (most of them under or nearby 1 cent).&lt;br /&gt;
Furthermore it has some &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;, &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt;, &lt;a class="wiki_link" href="/17-limit"&gt;17-limit&lt;/a&gt; and even &lt;a class="wiki_link" href="/23-limit"&gt;23-limit&lt;/a&gt; which are very close (most of them under or nearby 1 cent).&lt;br /&gt;