Temperament mapping matrix: Difference between revisions

Cmloegcmluin (talk | contribs)
add Regular temperament theory category
Cmloegcmluin (talk | contribs)
make the basic take on this information more prominently linked, since we have a pattern going of pages with general versions and mathematical versions
Line 1: Line 1:
This page gives a formal mathematical approach to [[RTT]] mapping. For a page with a simpler introduction, see [[mapping]].
=Basics=
=Basics=
The multiplicative group generated by any finite set of rational numbers is an r-rank free abelian group. Thus, an [[Abstract_regular_temperament|abstract regular temperament]], can be represented by a group homomorphism '''T''': J → K from the group J of JI rationals to a quotient group K of tempered intervals. This homomorphism can also be represented by a integer matrix, called a '''temperament mapping matrix'''; when context is clear enough it's also sometimes just called a '''mapping matrix''' or even just a '''mapping''' for the temperament in question. (Note that many group homomorphisms can correspond to the same temperament, simply mapping to a different choice of tempered coordinates.)
The multiplicative group generated by any finite set of rational numbers is an r-rank free abelian group. Thus, an [[Abstract_regular_temperament|abstract regular temperament]], can be represented by a group homomorphism '''T''': J → K from the group J of JI rationals to a quotient group K of tempered intervals. This homomorphism can also be represented by a integer matrix, called a '''temperament mapping matrix'''; when context is clear enough it's also sometimes just called a '''mapping matrix''' or even just a '''mapping''' for the temperament in question. (Note that many group homomorphisms can correspond to the same temperament, simply mapping to a different choice of tempered coordinates.)