29edo: Difference between revisions

Wikispaces>guest
**Imported revision 180616867 - Original comment: **
Wikispaces>Osmiorisbendi
**Imported revision 210044612 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2010-11-17 19:58:34 UTC</tt>.<br>
: This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2011-03-13 16:11:40 UTC</tt>.<br>
: The original revision id was <tt>180616867</tt>.<br>
: The original revision id was <tt>210044612</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">29edo divides the 2:1 octave into 29 equal steps of approximately 41.37931 cents.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #ff4700; font-size: 103%;"&gt;29 tone equal temperament&lt;/span&gt;=
 
29edo divides the 2:1 octave into 29 equal steps of approximately 41.37931 cents.


29 is the lowest edo which approximates the 3:2 just fifth more accurately than 12edo: 3/2 = 701.955... cents; 17 degrees of 29edo = 703.448... cents. Since the fifth is slightly sharp, 29edo is a [[positive temperament]] -- a Superpythagorean instead of a Meantone system.  
29 is the lowest edo which approximates the 3:2 just fifth more accurately than 12edo: 3/2 = 701.955... cents; 17 degrees of 29edo = 703.448... cents. Since the fifth is slightly sharp, 29edo is a [[positive temperament]] -- a Superpythagorean instead of a Meantone system.  
Line 12: Line 14:
The third (and of course second) is the only harmonic, of the intelligibly low ones anyway, that 29-edo approximates, and it does so stunningly well. Accordingly it's best use is as an equally tempered pythagorean scale, which despite yall's focus on insane xenharmonic stuff is still a good thing to have around. It does give some good approximations of other just ratios, but without the harmonics themselves, making them into actual chords in sensible progressions is impossible.
The third (and of course second) is the only harmonic, of the intelligibly low ones anyway, that 29-edo approximates, and it does so stunningly well. Accordingly it's best use is as an equally tempered pythagorean scale, which despite yall's focus on insane xenharmonic stuff is still a good thing to have around. It does give some good approximations of other just ratios, but without the harmonics themselves, making them into actual chords in sensible progressions is impossible.


==Intervals of 29edo==  
==Intervals==  
|| degrees of 29edo || cents value ||
|| Degrees of 29-EDO || Cents value ||
|| 0 || 0 ||
|| 0 || 0 ||
|| 1 || 41.379 ||
|| 1 || 41.379 ||
Line 44: Line 46:
|| 28 || 1158.621 ||</pre></div>
|| 28 || 1158.621 ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;29edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;29edo divides the 2:1 octave into 29 equal steps of approximately 41.37931 cents.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;29edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x29 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #ff4700; font-size: 103%;"&gt;29 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
&lt;br /&gt;
29edo divides the 2:1 octave into 29 equal steps of approximately 41.37931 cents.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
29 is the lowest edo which approximates the 3:2 just fifth more accurately than 12edo: 3/2 = 701.955... cents; 17 degrees of 29edo = 703.448... cents. Since the fifth is slightly sharp, 29edo is a &lt;a class="wiki_link" href="/positive%20temperament"&gt;positive temperament&lt;/a&gt; -- a Superpythagorean instead of a Meantone system. &lt;br /&gt;
29 is the lowest edo which approximates the 3:2 just fifth more accurately than 12edo: 3/2 = 701.955... cents; 17 degrees of 29edo = 703.448... cents. Since the fifth is slightly sharp, 29edo is a &lt;a class="wiki_link" href="/positive%20temperament"&gt;positive temperament&lt;/a&gt; -- a Superpythagorean instead of a Meantone system. &lt;br /&gt;
Line 50: Line 54:
The third (and of course second) is the only harmonic, of the intelligibly low ones anyway, that 29-edo approximates, and it does so stunningly well. Accordingly it's best use is as an equally tempered pythagorean scale, which despite yall's focus on insane xenharmonic stuff is still a good thing to have around. It does give some good approximations of other just ratios, but without the harmonics themselves, making them into actual chords in sensible progressions is impossible.&lt;br /&gt;
The third (and of course second) is the only harmonic, of the intelligibly low ones anyway, that 29-edo approximates, and it does so stunningly well. Accordingly it's best use is as an equally tempered pythagorean scale, which despite yall's focus on insane xenharmonic stuff is still a good thing to have around. It does give some good approximations of other just ratios, but without the harmonics themselves, making them into actual chords in sensible progressions is impossible.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Intervals of 29edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Intervals of 29edo&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x29 tone equal temperament-Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h2&gt;
   
   


&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;degrees of 29edo&lt;br /&gt;
         &lt;td&gt;Degrees of 29-EDO&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;cents value&lt;br /&gt;
         &lt;td&gt;Cents value&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;