29edo: Difference between revisions

Wikispaces>MasonGreen1
**Imported revision 610044611 - Original comment: **
Wikispaces>hstraub
**Imported revision 614182467 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:MasonGreen1|MasonGreen1]] and made on <tt>2017-04-01 15:13:58 UTC</tt>.<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2017-06-05 06:31:08 UTC</tt>.<br>
: The original revision id was <tt>610044611</tt>.<br>
: The original revision id was <tt>614182467</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 23: Line 23:
Edson is a 2.3.7/5.11/5.13/5 subgroup temperament, and 29 it represents the 2.3.11/5.13/5 subgroup to very high accuracy, and the 2.3.7/5.11/5.13/5 to a lesser but still good accuracy, and so can be used with this subgroup, which is liberally supplied with chords such as the 1-11/7-13/7 (7:11:13) chord, the [[xenharmonic/The Archipelago|barbados triad]] 1-13/10-3/2 (10:13:15), the minor barbados triad 1-15/13-3/2, the 1-14/11-3/2 (22:28:33) triad, the 1-13/11-3/2 triad (22:26:33), and the [[xenharmonic/petrmic triad|petrmic triad]], a 13-limit [[xenharmonic/Dyadic chord|essentially tempered dyadic chord]]. 29 tempers out 352/351, 676/675 and 4000/3993 from the 2.3.11/5.13/5 subgroup, and in addition 196/195 and 364/363 from the 2.3.7/5.11/5.13/5 subgroup, so we have various relationships from the tempering, such as the fact that the 1-13/11-3/2 chord and the 1-14/11-3/2 chord are inverses of each other, a major-minor pairing. A larger subgroup containing both of these subgroups is the [[xenharmonic/k*N subgroups|3*29 subgroup]] 2.3.125.175.275.325; on this subgroup 29 tunes the same as 87, and the commas of 29 on this subgroup are the same as the 13-limit commas of 87. Still another subgroup of interest is the [[xenharmonic/k*N subgroups|2*29 subgroup]] 2.3.25.35.55.65.85; on this subgroup 29 tunes the same as 58 and has the same 17-limit commas.
Edson is a 2.3.7/5.11/5.13/5 subgroup temperament, and 29 it represents the 2.3.11/5.13/5 subgroup to very high accuracy, and the 2.3.7/5.11/5.13/5 to a lesser but still good accuracy, and so can be used with this subgroup, which is liberally supplied with chords such as the 1-11/7-13/7 (7:11:13) chord, the [[xenharmonic/The Archipelago|barbados triad]] 1-13/10-3/2 (10:13:15), the minor barbados triad 1-15/13-3/2, the 1-14/11-3/2 (22:28:33) triad, the 1-13/11-3/2 triad (22:26:33), and the [[xenharmonic/petrmic triad|petrmic triad]], a 13-limit [[xenharmonic/Dyadic chord|essentially tempered dyadic chord]]. 29 tempers out 352/351, 676/675 and 4000/3993 from the 2.3.11/5.13/5 subgroup, and in addition 196/195 and 364/363 from the 2.3.7/5.11/5.13/5 subgroup, so we have various relationships from the tempering, such as the fact that the 1-13/11-3/2 chord and the 1-14/11-3/2 chord are inverses of each other, a major-minor pairing. A larger subgroup containing both of these subgroups is the [[xenharmonic/k*N subgroups|3*29 subgroup]] 2.3.125.175.275.325; on this subgroup 29 tunes the same as 87, and the commas of 29 on this subgroup are the same as the 13-limit commas of 87. Still another subgroup of interest is the [[xenharmonic/k*N subgroups|2*29 subgroup]] 2.3.25.35.55.65.85; on this subgroup 29 tunes the same as 58 and has the same 17-limit commas.


29edo could be thought of as 12edo's "twin", since the 5-limit error for both is almost exactly the same, but in the opposite direction. There are other ways in which they are counterparts (12 tempers out 50:49 but not 49:48; 29 does the opposite). Each supports a particularly good tonal framework (meantone[7] and nautilus[14], respectively).  
29edo could be thought of as 12edo's "twin", since the 5-limit error for both is almost exactly the same, but in the opposite direction. There are other ways in which they are counterparts (12 tempers out 50:49 but not 49:48; 29 does the opposite). Each supports a particularly good tonal framework (meantone[7] and nautilus[14], respectively).


A more coincidental similarity is that just as the 12-tone scale is also a 1/2-tone scale (the whole tone being divided into 2 semitones), the 29-tone temperament may also be called 2/9-tone. This is because it has two different sizes of whole tone (4 and 5 steps wide, respectively). So the step size of 29edo may be called a 2/9-tone, just as 24edo's step size is called a quarter tone.
A more coincidental similarity is that just as the 12-tone scale is also a 1/2-tone scale (the whole tone being divided into 2 semitones), the 29-tone temperament may also be called 2/9-tone. This is because it has two different sizes of whole tone (4 and 5 steps wide, respectively). So the step size of 29edo may be called a 2/9-tone, just as 24edo's step size is called a quarter tone.
Line 103: Line 103:


=Commas=  
=Commas=  
29 EDO tempers out the following commas. (Note: This assumes the val &lt; [[tel:29 46 67 81 100 107|29 46 67 81 100 107]] |, cent values rounded to 5 digits.)
29 EDO tempers out the following commas. (Note: This assumes the val &lt; [[tel/29 46 67 81 100 107|29 46 67 81 100 107]] |, cent values rounded to 5 digits.)
||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||
||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||
||= 16875/16384 || | -14 3 4 &gt; ||&gt; 51.120 ||= Negri Comma ||= Double Augmentation Diesis ||
||= 16875/16384 || | -14 3 4 &gt; ||&gt; 51.120 ||= Negri Comma ||= Double Augmentation Diesis ||
Line 126: Line 126:
||= 91/90 || | -1 -2 -1 1 0 1 &gt; ||&gt; 19.130 ||= Superleap ||=  ||
||= 91/90 || | -1 -2 -1 1 0 1 &gt; ||&gt; 19.130 ||= Superleap ||=  ||


==The Tetradecatonic System==  
=The Tetradecatonic System=  


A variant of porcupine supported in 29edo is [[xenharmonic/nautilus|nautilus]], which splits the porcupine generator in half (tempering out 50:49 in the process), thus resulting in a different mapping for 7 than standard porcupine. Nautilus also extends to the 13-limit much more easily than does standard porcupine.
A variant of porcupine supported in 29edo is [[xenharmonic/nautilus|nautilus]], which splits the porcupine generator in half (tempering out 50:49 in the process), thus resulting in a different mapping for 7 than standard porcupine. Nautilus also extends to the 13-limit much more easily than does standard porcupine.
Line 169: Line 169:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;29edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;span style="display: block; text-align: right;"&gt;&lt;a class="wiki_link" href="http://xenharmonie.wikispaces.com/29edo"&gt;Deutsch&lt;/a&gt;&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;29edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;span style="display: block; text-align: right;"&gt;&lt;a class="wiki_link" href="http://xenharmonie.wikispaces.com/29edo"&gt;Deutsch&lt;/a&gt;&lt;br /&gt;
&lt;/span&gt;&lt;br /&gt;
&lt;/span&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextTocRule:22:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;!-- ws:start:WikiTextTocRule:23: --&gt;&lt;a href="#x29 tone equal temperament"&gt;29 tone equal temperament&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:23 --&gt;&lt;!-- ws:start:WikiTextTocRule:24: --&gt; | &lt;a href="#Intervals and linear temperaments"&gt;Intervals and linear temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;!-- ws:start:WikiTextTocRule:26: --&gt; | &lt;a href="#Commas"&gt;Commas&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt;&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt; | &lt;a href="#Nicetone"&gt;Nicetone&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;!-- ws:start:WikiTextTocRule:29: --&gt; | &lt;a href="#Scales"&gt;Scales&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:29 --&gt;&lt;!-- ws:start:WikiTextTocRule:30: --&gt; | &lt;a href="#Music"&gt;Music&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt;&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt;&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;
&lt;!-- ws:start:WikiTextTocRule:22:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;!-- ws:start:WikiTextTocRule:23: --&gt;&lt;a href="#x29 tone equal temperament"&gt;29 tone equal temperament&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:23 --&gt;&lt;!-- ws:start:WikiTextTocRule:24: --&gt; | &lt;a href="#Intervals and linear temperaments"&gt;Intervals and linear temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;!-- ws:start:WikiTextTocRule:26: --&gt; | &lt;a href="#Commas"&gt;Commas&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt; | &lt;a href="#The Tetradecatonic System"&gt;The Tetradecatonic System&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt; | &lt;a href="#Nicetone"&gt;Nicetone&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;!-- ws:start:WikiTextTocRule:29: --&gt; | &lt;a href="#Scales"&gt;Scales&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:29 --&gt;&lt;!-- ws:start:WikiTextTocRule:30: --&gt; | &lt;a href="#Music"&gt;Music&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt;&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt;&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;
&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;hr /&gt;
&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;hr /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 184: Line 184:
Edson is a 2.3.7/5.11/5.13/5 subgroup temperament, and 29 it represents the 2.3.11/5.13/5 subgroup to very high accuracy, and the 2.3.7/5.11/5.13/5 to a lesser but still good accuracy, and so can be used with this subgroup, which is liberally supplied with chords such as the 1-11/7-13/7 (7:11:13) chord, the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Archipelago"&gt;barbados triad&lt;/a&gt; 1-13/10-3/2 (10:13:15), the minor barbados triad 1-15/13-3/2, the 1-14/11-3/2 (22:28:33) triad, the 1-13/11-3/2 triad (22:26:33), and the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/petrmic%20triad"&gt;petrmic triad&lt;/a&gt;, a 13-limit &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Dyadic%20chord"&gt;essentially tempered dyadic chord&lt;/a&gt;. 29 tempers out 352/351, 676/675 and 4000/3993 from the 2.3.11/5.13/5 subgroup, and in addition 196/195 and 364/363 from the 2.3.7/5.11/5.13/5 subgroup, so we have various relationships from the tempering, such as the fact that the 1-13/11-3/2 chord and the 1-14/11-3/2 chord are inverses of each other, a major-minor pairing. A larger subgroup containing both of these subgroups is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/k%2AN%20subgroups"&gt;3*29 subgroup&lt;/a&gt; 2.3.125.175.275.325; on this subgroup 29 tunes the same as 87, and the commas of 29 on this subgroup are the same as the 13-limit commas of 87. Still another subgroup of interest is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/k%2AN%20subgroups"&gt;2*29 subgroup&lt;/a&gt; 2.3.25.35.55.65.85; on this subgroup 29 tunes the same as 58 and has the same 17-limit commas.&lt;br /&gt;
Edson is a 2.3.7/5.11/5.13/5 subgroup temperament, and 29 it represents the 2.3.11/5.13/5 subgroup to very high accuracy, and the 2.3.7/5.11/5.13/5 to a lesser but still good accuracy, and so can be used with this subgroup, which is liberally supplied with chords such as the 1-11/7-13/7 (7:11:13) chord, the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Archipelago"&gt;barbados triad&lt;/a&gt; 1-13/10-3/2 (10:13:15), the minor barbados triad 1-15/13-3/2, the 1-14/11-3/2 (22:28:33) triad, the 1-13/11-3/2 triad (22:26:33), and the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/petrmic%20triad"&gt;petrmic triad&lt;/a&gt;, a 13-limit &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Dyadic%20chord"&gt;essentially tempered dyadic chord&lt;/a&gt;. 29 tempers out 352/351, 676/675 and 4000/3993 from the 2.3.11/5.13/5 subgroup, and in addition 196/195 and 364/363 from the 2.3.7/5.11/5.13/5 subgroup, so we have various relationships from the tempering, such as the fact that the 1-13/11-3/2 chord and the 1-14/11-3/2 chord are inverses of each other, a major-minor pairing. A larger subgroup containing both of these subgroups is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/k%2AN%20subgroups"&gt;3*29 subgroup&lt;/a&gt; 2.3.125.175.275.325; on this subgroup 29 tunes the same as 87, and the commas of 29 on this subgroup are the same as the 13-limit commas of 87. Still another subgroup of interest is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/k%2AN%20subgroups"&gt;2*29 subgroup&lt;/a&gt; 2.3.25.35.55.65.85; on this subgroup 29 tunes the same as 58 and has the same 17-limit commas.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
29edo could be thought of as 12edo's &amp;quot;twin&amp;quot;, since the 5-limit error for both is almost exactly the same, but in the opposite direction. There are other ways in which they are counterparts (12 tempers out 50:49 but not 49:48; 29 does the opposite). Each supports a particularly good tonal framework (meantone[7] and nautilus[14], respectively). &lt;br /&gt;
29edo could be thought of as 12edo's &amp;quot;twin&amp;quot;, since the 5-limit error for both is almost exactly the same, but in the opposite direction. There are other ways in which they are counterparts (12 tempers out 50:49 but not 49:48; 29 does the opposite). Each supports a particularly good tonal framework (meantone[7] and nautilus[14], respectively).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
A more coincidental similarity is that just as the 12-tone scale is also a 1/2-tone scale (the whole tone being divided into 2 semitones), the 29-tone temperament may also be called 2/9-tone. This is because it has two different sizes of whole tone (4 and 5 steps wide, respectively). So the step size of 29edo may be called a 2/9-tone, just as 24edo's step size is called a quarter tone.&lt;br /&gt;
A more coincidental similarity is that just as the 12-tone scale is also a 1/2-tone scale (the whole tone being divided into 2 semitones), the 29-tone temperament may also be called 2/9-tone. This is because it has two different sizes of whole tone (4 and 5 steps wide, respectively). So the step size of 29edo may be called a 2/9-tone, just as 24edo's step size is called a quarter tone.&lt;br /&gt;
Line 1,119: Line 1,119:


&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Commas-The Tetradecatonic System"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;The Tetradecatonic System&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="The Tetradecatonic System"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;The Tetradecatonic System&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
A variant of porcupine supported in 29edo is &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/nautilus"&gt;nautilus&lt;/a&gt;, which splits the porcupine generator in half (tempering out 50:49 in the process), thus resulting in a different mapping for 7 than standard porcupine. Nautilus also extends to the 13-limit much more easily than does standard porcupine.&lt;br /&gt;
A variant of porcupine supported in 29edo is &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/nautilus"&gt;nautilus&lt;/a&gt;, which splits the porcupine generator in half (tempering out 50:49 in the process), thus resulting in a different mapping for 7 than standard porcupine. Nautilus also extends to the 13-limit much more easily than does standard porcupine.&lt;br /&gt;