28edo: Difference between revisions
Wikispaces>JosephRuhf **Imported revision 545657998 - Original comment: ** |
Wikispaces>PiotrGrochowski **Imported revision 591574624 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:PiotrGrochowski|PiotrGrochowski]] and made on <tt>2016-09-10 14:48:39 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>591574624</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 10: | Line 10: | ||
=Basic properties= | =Basic properties= | ||
28edo, a multiple of both [[xenharmonic/7edo|7edo]] and [[xenharmonic/14edo|14edo]] (and of course [[xenharmonic/2edo|2edo]] and [[xenharmonic/4edo|4edo]]), has a step size of 42.857 [[xenharmonic/cent|cent]]s. It shares three intervals with [[xenharmonic/12edo|12edo]]: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it [[xenharmonic/tempering out|tempers out]] the [[xenharmonic/greater diesis|greater diesis]] [[xenharmonic/648_625|648:625]]. It does not however temper out the [[xenharmonic/128_125|128:125]] [[xenharmonic/lesser diesis|lesser diesis]], as its major third is less than 1 cent flat (and its inversion the minor sixth less than 1 cent sharp). It has the same perfect fourth and fifth as | 28edo, a multiple of both [[xenharmonic/7edo|7edo]] and [[xenharmonic/14edo|14edo]] (and of course [[xenharmonic/2edo|2edo]] and [[xenharmonic/4edo|4edo]]), has a step size of 42.857 [[xenharmonic/cent|cent]]s. It shares three intervals with [[xenharmonic/12edo|12edo]]: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it [[xenharmonic/tempering out|tempers out]] the [[xenharmonic/greater diesis|greater diesis]] [[xenharmonic/648_625|648:625]]. It does not however temper out the [[xenharmonic/128_125|128:125]] [[xenharmonic/lesser diesis|lesser diesis]], as its major third is less than 1 cent flat (and its inversion the minor sixth less than 1 cent sharp). It has the same perfect fourth and fifth as 7edo. It also has decent approximations of several septimal intervals, of which [[xenharmonic/9_7|9/7]] and its inversion [[xenharmonic/14_9|14/9]] are also found in 14edo. | ||
=Subgroups= | =Subgroups= | ||
Line 177: | Line 177: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Basic properties"></a><!-- ws:end:WikiTextHeadingRule:0 -->Basic properties</h1> | <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Basic properties"></a><!-- ws:end:WikiTextHeadingRule:0 -->Basic properties</h1> | ||
28edo, a multiple of both <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo">7edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/14edo">14edo</a> (and of course <a class="wiki_link" href="http://xenharmonic.wikispaces.com/2edo">2edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/4edo">4edo</a>), has a step size of 42.857 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">cent</a>s. It shares three intervals with <a class="wiki_link" href="http://xenharmonic.wikispaces.com/12edo">12edo</a>: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it <a class="wiki_link" href="http://xenharmonic.wikispaces.com/tempering%20out">tempers out</a> the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/greater%20diesis">greater diesis</a> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/648_625">648:625</a>. It does not however temper out the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/128_125">128:125</a> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/lesser%20diesis">lesser diesis</a>, as its major third is less than 1 cent flat (and its inversion the minor sixth less than 1 cent sharp). It has the same perfect fourth and fifth as | 28edo, a multiple of both <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo">7edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/14edo">14edo</a> (and of course <a class="wiki_link" href="http://xenharmonic.wikispaces.com/2edo">2edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/4edo">4edo</a>), has a step size of 42.857 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">cent</a>s. It shares three intervals with <a class="wiki_link" href="http://xenharmonic.wikispaces.com/12edo">12edo</a>: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it <a class="wiki_link" href="http://xenharmonic.wikispaces.com/tempering%20out">tempers out</a> the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/greater%20diesis">greater diesis</a> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/648_625">648:625</a>. It does not however temper out the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/128_125">128:125</a> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/lesser%20diesis">lesser diesis</a>, as its major third is less than 1 cent flat (and its inversion the minor sixth less than 1 cent sharp). It has the same perfect fourth and fifth as 7edo. It also has decent approximations of several septimal intervals, of which <a class="wiki_link" href="http://xenharmonic.wikispaces.com/9_7">9/7</a> and its inversion <a class="wiki_link" href="http://xenharmonic.wikispaces.com/14_9">14/9</a> are also found in 14edo.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Subgroups"></a><!-- ws:end:WikiTextHeadingRule:2 -->Subgroups</h1> | <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Subgroups"></a><!-- ws:end:WikiTextHeadingRule:2 -->Subgroups</h1> |