26edo: Difference between revisions
Wikispaces>genewardsmith **Imported revision 234380890 - Original comment: ** |
Wikispaces>xenwolf **Imported revision 234975370 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-06-07 17:43:16 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>234975370</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//26edo// divides the octave into 26 equal parts of 46.154 | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//26edo// divides the [[octave]] into 26 equal parts of 46.154 [[cent]s each. It tempers out 81/80 in the [[5-limit]], making it a meantone tuning with a very flat fifth. In the [[7-limit]], it tempers out 50/49, 525/512 and 875/864, and supports [[Meantone family|injera]] and [[Meantone family|flattone]] temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the 13 odd limit consistently. 26edo has a very good approximation of the harmonic seventh ([[7_4|7/4]]). | ||
=**Structure**= | =**Structure**= | ||
Line 117: | Line 117: | ||
[[http://danielthompson.blogspot.com/2007/04/new-version-of-organ-study-1.html|A New Recording of Organ Study #1]] by [[Daniel Thompson]]</pre></div> | [[http://danielthompson.blogspot.com/2007/04/new-version-of-organ-study-1.html|A New Recording of Organ Study #1]] by [[Daniel Thompson]]</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>26edo</title></head><body><em>26edo</em> divides the octave into 26 equal parts of 46.154 | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>26edo</title></head><body><em>26edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 26 equal parts of 46.154 [[cent]s each. It tempers out 81/80 in the <a class="wiki_link" href="/5-limit">5-limit</a>, making it a meantone tuning with a very flat fifth. In the <a class="wiki_link" href="/7-limit">7-limit</a>, it tempers out 50/49, 525/512 and 875/864, and supports <a class="wiki_link" href="/Meantone%20family">injera</a> and <a class="wiki_link" href="/Meantone%20family">flattone</a> temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the 13 odd limit consistently. 26edo has a very good approximation of the harmonic seventh (<a class="wiki_link" href="/7_4">7/4</a>).<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Structure"></a><!-- ws:end:WikiTextHeadingRule:0 --><strong>Structure</strong></h1> | <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Structure"></a><!-- ws:end:WikiTextHeadingRule:0 --><strong>Structure</strong></h1> |