26edo: Difference between revisions

Wikispaces>hstraub
**Imported revision 238913601 - Original comment: **
Wikispaces>xenwolf
**Imported revision 239003133 - Original comment: 13-limit is prime *and* odd :)**
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2011-06-27 05:13:18 UTC</tt>.<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-06-27 16:01:42 UTC</tt>.<br>
: The original revision id was <tt>238913601</tt>.<br>
: The original revision id was <tt>239003133</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt>13-limit is prime *and* odd :)</tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//26edo// divides the [[octave]] into 26 equal parts of 46.154 [[cent]]s each. It tempers out 81/80 in the [[5-limit]], making it a meantone tuning with a very flat fifth. In the [[7-limit]], it tempers out 50/49, 525/512 and 875/864, and supports [[Meantone family|injera]] and [[Meantone family|flattone]] temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the 13 odd limit[[consistent| consistent]]ly. 26edo has a very good approximation of the harmonic seventh ([[7_4|7/4]]).
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//26edo// divides the [[octave]] into 26 equal parts of 46.154 [[cent]]s each. It tempers out 81/80 in the [[5-limit]], making it a meantone tuning with a very flat fifth. In the [[7-limit]], it tempers out 50/49, 525/512 and 875/864, and supports [[Meantone family|injera]] and [[Meantone family|flattone]] temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the [[13-limit|13 odd limit]] [[consistent| consistent]]ly. 26edo has a very good approximation of the harmonic seventh ([[7_4|7/4]]).


=**Structure**=  
=**Structure**=  
Line 118: Line 118:
[[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Bobro/LittleFugueIn26_CBobro.mp3|Little Fugue in 26]] by [[Cameron Bobro]]</pre></div>
[[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Bobro/LittleFugueIn26_CBobro.mp3|Little Fugue in 26]] by [[Cameron Bobro]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;26edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;em&gt;26edo&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 26 equal parts of 46.154 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. It tempers out 81/80 in the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;, making it a meantone tuning with a very flat fifth. In the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, it tempers out 50/49, 525/512 and 875/864, and supports &lt;a class="wiki_link" href="/Meantone%20family"&gt;injera&lt;/a&gt; and &lt;a class="wiki_link" href="/Meantone%20family"&gt;flattone&lt;/a&gt; temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the 13 odd limit&lt;a class="wiki_link" href="/consistent"&gt; consistent&lt;/a&gt;ly. 26edo has a very good approximation of the harmonic seventh (&lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt;).&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;26edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;em&gt;26edo&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 26 equal parts of 46.154 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. It tempers out 81/80 in the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;, making it a meantone tuning with a very flat fifth. In the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, it tempers out 50/49, 525/512 and 875/864, and supports &lt;a class="wiki_link" href="/Meantone%20family"&gt;injera&lt;/a&gt; and &lt;a class="wiki_link" href="/Meantone%20family"&gt;flattone&lt;/a&gt; temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the &lt;a class="wiki_link" href="/13-limit"&gt;13 odd limit&lt;/a&gt; &lt;a class="wiki_link" href="/consistent"&gt; consistent&lt;/a&gt;ly. 26edo has a very good approximation of the harmonic seventh (&lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt;).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Structure"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;strong&gt;Structure&lt;/strong&gt;&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Structure"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;strong&gt;Structure&lt;/strong&gt;&lt;/h1&gt;