26edo: Difference between revisions

Wikispaces>xenwolf
**Imported revision 239003133 - Original comment: 13-limit is prime *and* odd :)**
Wikispaces>igliashon
**Imported revision 242824431 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-06-27 16:01:42 UTC</tt>.<br>
: This revision was by author [[User:igliashon|igliashon]] and made on <tt>2011-07-25 21:33:08 UTC</tt>.<br>
: The original revision id was <tt>239003133</tt>.<br>
: The original revision id was <tt>242824431</tt>.<br>
: The revision comment was: <tt>13-limit is prime *and* odd :)</tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
Line 74: Line 74:
=Intervals=  
=Intervals=  


|| degree || [[cent]]s ||
|| degree || [[cent]]s ||= Approximate
|| 0 || 0 ||
Ratios* ||
|| 1 || 46.154 ||
|| 0 || 0 ||= 1/1 ||
|| 2 || 92.308 ||
|| 1 || 46.154 ||= 33/32, 49/48, 36/35, 25/24 ||
|| 3 || 138.46 ||
|| 2 || 92.308 ||= 21/20 ||
|| 4 || 184.62 ||
|| 3 || 138.46 ||= 14/13, 16/15 ||
|| 5 || 230.77 ||
|| 4 || 184.62 ||= 9/8, 10/9, 11/10 ||
|| 6 || 276.92 ||
|| 5 || 230.77 ||= 8/7 ||
|| 7 || 323.08 ||
|| 6 || 276.92 ||= 7/6, 13/11, 33/28 ||
|| 8 || 369.23 ||
|| 7 || 323.08 ||= 6/5 ||
|| 9 || 415.38 ||
|| 8 || 369.23 ||= 5/4, 16/13 ||
|| 10 || 461.54 ||
|| 9 || 415.38 ||= 9/7, 14/11, 33/26 ||
|| 11 || 507.69 ||
|| 10 || 461.54 ||= 21/16, 13/10 ||
|| 12 || 553.85 ||
|| 11 || 507.69 ||= 4/3 ||
|| 13 || 600.00 ||
|| 12 || 553.85 ||= 11/8, 18/13 ||
|| 14 || 646.15 ||
|| 13 || 600.00 ||= 7/5, 10/7 ||
|| 15 || 692.31 ||
|| 14 || 646.15 ||= 16/11, 13/9 ||
|| 16 || 738.46 ||
|| 15 || 692.31 ||= 3/2 ||
|| 17 || 784.62 ||
|| 16 || 738.46 ||= 32/21, 20/13 ||
|| 18 || 830.77 ||
|| 17 || 784.62 ||= 11/7, 14/9 ||
|| 19 || 876.92 ||
|| 18 || 830.77 ||= 13/8, 8/5 ||
|| 20 || 923.08 ||
|| 19 || 876.92 ||= 5/3 ||
|| 21 || 969.23 ||
|| 20 || 923.08 ||= 12/7, 22/13 ||
|| 22 || 1015.4 ||
|| 21 || 969.23 ||= 7/4 ||
|| 23 || 1061.5 ||
|| 22 || 1015.4 ||= 9/5, 16/9, 20/11 ||
|| 24 || 1107.7 ||
|| 23 || 1061.5 ||= 13/7, 15/8 ||
|| 25 || 1153.8 ||
|| 24 || 1107.7 ||= 40/21 ||
 
|| 25 || 1153.8 ||= 64/33, 96/49, 35/18, 48/25 ||
|| 26 || 1200 ||= 2/1 ||
*based on treating 26-EDO as a 13-limit temperament; other approaches are possible.
=Additional Scalar Bases Available in 26-EDO:=  
=Additional Scalar Bases Available in 26-EDO:=  
Since the perfect 5th in 26-EDO spans 15 degrees, it can be divided into three equal parts (each approximately an 8/7) as well as five equal parts (each approximately a 13/12). The former approach produces MOS at 1L+4s, 5L+1s, and 5L+6s (5 5 5 5 6, 5 5 5 5 5 1, and 4 1 4 1 4 1 4 1 4 1 1 respectively), and is excellent for 4:6:7 triads. The latter produces MOS at 1L+7s and 8L+1s (3 3 3 3 3 3 3 5 and 3 3 3 3 3 3 3 3 2 respectively), and is fairly well-supplied with 4:6:7:11:13 pentads. It also works well for more conventional (thought further from Just) 6:7:9 triads, as well as 4:5:6 triads that use the worse mapping for 5 (making 5/4 the 415.38-cent interval).
Since the perfect 5th in 26-EDO spans 15 degrees, it can be divided into three equal parts (each approximately an 8/7) as well as five equal parts (each approximately a 13/12). The former approach produces MOS at 1L+4s, 5L+1s, and 5L+6s (5 5 5 5 6, 5 5 5 5 5 1, and 4 1 4 1 4 1 4 1 4 1 1 respectively), and is excellent for 4:6:7 triads. The latter produces MOS at 1L+7s and 8L+1s (3 3 3 3 3 3 3 5 and 3 3 3 3 3 3 3 3 2 respectively), and is fairly well-supplied with 4:6:7:11:13 pentads. It also works well for more conventional (thought further from Just) 6:7:9 triads, as well as 4:5:6 triads that use the worse mapping for 5 (making 5/4 the 415.38-cent interval).
Line 626: Line 628:
Orgone has a minimax tuning which sharpens both 7 and 11 by 1/5 of an orgonisma, or 1.679 cents. This makes the generator g a 77/64 sharp by 2/5 of the orgonisma. From this we may conclude that 24/89 or 31/115 would be reasonable alternatives to the 7/26 generator.&lt;br /&gt;
Orgone has a minimax tuning which sharpens both 7 and 11 by 1/5 of an orgonisma, or 1.679 cents. This makes the generator g a 77/64 sharp by 2/5 of the orgonisma. From this we may conclude that 24/89 or 31/115 would be reasonable alternatives to the 7/26 generator.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:652:&amp;lt;img src=&amp;quot;/file/view/orgone_heptatonic.jpg/155606933/orgone_heptatonic.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/orgone_heptatonic.jpg/155606933/orgone_heptatonic.jpg" alt="orgone_heptatonic.jpg" title="orgone_heptatonic.jpg" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:652 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:714:&amp;lt;img src=&amp;quot;/file/view/orgone_heptatonic.jpg/155606933/orgone_heptatonic.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/orgone_heptatonic.jpg/155606933/orgone_heptatonic.jpg" alt="orgone_heptatonic.jpg" title="orgone_heptatonic.jpg" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:714 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Intervals&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Intervals&lt;/h1&gt;
Line 637: Line 639:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Approximate&lt;br /&gt;
Ratios*&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 643: Line 648:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;0&lt;br /&gt;
         &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1/1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 649: Line 656:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;46.154&lt;br /&gt;
         &lt;td&gt;46.154&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;33/32, 49/48, 36/35, 25/24&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 655: Line 664:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;92.308&lt;br /&gt;
         &lt;td&gt;92.308&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;21/20&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 661: Line 672:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;138.46&lt;br /&gt;
         &lt;td&gt;138.46&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;14/13, 16/15&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 667: Line 680:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;184.62&lt;br /&gt;
         &lt;td&gt;184.62&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;9/8, 10/9, 11/10&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 673: Line 688:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;230.77&lt;br /&gt;
         &lt;td&gt;230.77&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;8/7&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 679: Line 696:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;276.92&lt;br /&gt;
         &lt;td&gt;276.92&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7/6, 13/11, 33/28&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 685: Line 704:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;323.08&lt;br /&gt;
         &lt;td&gt;323.08&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;6/5&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 691: Line 712:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;369.23&lt;br /&gt;
         &lt;td&gt;369.23&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;5/4, 16/13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 697: Line 720:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;415.38&lt;br /&gt;
         &lt;td&gt;415.38&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;9/7, 14/11, 33/26&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 703: Line 728:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;461.54&lt;br /&gt;
         &lt;td&gt;461.54&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;21/16, 13/10&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 709: Line 736:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;507.69&lt;br /&gt;
         &lt;td&gt;507.69&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;4/3&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 715: Line 744:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;553.85&lt;br /&gt;
         &lt;td&gt;553.85&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;11/8, 18/13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 721: Line 752:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;600.00&lt;br /&gt;
         &lt;td&gt;600.00&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7/5, 10/7&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 727: Line 760:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;646.15&lt;br /&gt;
         &lt;td&gt;646.15&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;16/11, 13/9&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 733: Line 768:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;692.31&lt;br /&gt;
         &lt;td&gt;692.31&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;3/2&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 739: Line 776:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;738.46&lt;br /&gt;
         &lt;td&gt;738.46&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;32/21, 20/13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 745: Line 784:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;784.62&lt;br /&gt;
         &lt;td&gt;784.62&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;11/7, 14/9&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 751: Line 792:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;830.77&lt;br /&gt;
         &lt;td&gt;830.77&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;13/8, 8/5&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 757: Line 800:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;876.92&lt;br /&gt;
         &lt;td&gt;876.92&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;5/3&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 763: Line 808:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;923.08&lt;br /&gt;
         &lt;td&gt;923.08&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;12/7, 22/13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 769: Line 816:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;969.23&lt;br /&gt;
         &lt;td&gt;969.23&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7/4&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 775: Line 824:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1015.4&lt;br /&gt;
         &lt;td&gt;1015.4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;9/5, 16/9, 20/11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 781: Line 832:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1061.5&lt;br /&gt;
         &lt;td&gt;1061.5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;13/7, 15/8&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 787: Line 840:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1107.7&lt;br /&gt;
         &lt;td&gt;1107.7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;40/21&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 793: Line 848:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1153.8&lt;br /&gt;
         &lt;td&gt;1153.8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;64/33, 96/49, 35/18, 48/25&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;2/1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
&lt;/table&gt;
&lt;/table&gt;


&lt;br /&gt;
*based on treating 26-EDO as a 13-limit temperament; other approaches are possible.&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Additional Scalar Bases Available in 26-EDO:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Additional Scalar Bases Available in 26-EDO:&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Additional Scalar Bases Available in 26-EDO:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Additional Scalar Bases Available in 26-EDO:&lt;/h1&gt;
  Since the perfect 5th in 26-EDO spans 15 degrees, it can be divided into three equal parts (each approximately an 8/7) as well as five equal parts (each approximately a 13/12). The former approach produces MOS at 1L+4s, 5L+1s, and 5L+6s (5 5 5 5 6, 5 5 5 5 5 1, and 4 1 4 1 4 1 4 1 4 1 1 respectively), and is excellent for 4:6:7 triads. The latter produces MOS at 1L+7s and 8L+1s (3 3 3 3 3 3 3 5 and 3 3 3 3 3 3 3 3 2 respectively), and is fairly well-supplied with 4:6:7:11:13 pentads. It also works well for more conventional (thought further from Just) 6:7:9 triads, as well as 4:5:6 triads that use the worse mapping for 5 (making 5/4 the 415.38-cent interval).&lt;br /&gt;
  Since the perfect 5th in 26-EDO spans 15 degrees, it can be divided into three equal parts (each approximately an 8/7) as well as five equal parts (each approximately a 13/12). The former approach produces MOS at 1L+4s, 5L+1s, and 5L+6s (5 5 5 5 6, 5 5 5 5 5 1, and 4 1 4 1 4 1 4 1 4 1 1 respectively), and is excellent for 4:6:7 triads. The latter produces MOS at 1L+7s and 8L+1s (3 3 3 3 3 3 3 5 and 3 3 3 3 3 3 3 3 2 respectively), and is fairly well-supplied with 4:6:7:11:13 pentads. It also works well for more conventional (thought further from Just) 6:7:9 triads, as well as 4:5:6 triads that use the worse mapping for 5 (making 5/4 the 415.38-cent interval).&lt;br /&gt;