26edo: Difference between revisions
Wikispaces>xenwolf **Imported revision 602893772 - Original comment: removed tel links** |
Wikispaces>MasonGreen1 **Imported revision 603224018 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:MasonGreen1|MasonGreen1]] and made on <tt>2017-01-07 03:58:12 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>603224018</tt>.<br> | ||
: The revision comment was: <tt> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]] | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]] | ||
//26edo// divides the [[octave]] into 26 equal parts of 46.154 [[cent]]s each. It tempers out 81/80 in the [[5-limit]], making it a meantone tuning with a very flat fifth. In the [[7-limit]], it tempers out 50/49, 525/512 and 875/864, and supports [[Meantone family|injera]], [[Meantone family|flattone]], [[Jubilismic clan#Lemba|lemba]] and [[Jubilismic clan#Doublewide|doublewide]] temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the [[13-limit|13 odd limit]] [[consistent|consistently]]. 26edo has a very good approximation of the harmonic seventh ([[7_4|7/4]]). | //26edo// divides the [[octave]] into 26 equal parts of 46.154 [[cent]]s each. It tempers out 81/80 in the [[5-limit]], making it a meantone tuning with a very flat fifth. In the [[7-limit]], it tempers out 50/49, 525/512 and 875/864, and supports [[Meantone family|injera]], [[Meantone family|flattone]], [[Jubilismic clan#Lemba|lemba]] and [[Jubilismic clan#Doublewide|doublewide]] temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the [[13-limit|13 odd limit]] [[consistent|consistently]]. 26edo has a very good approximation of the harmonic seventh ([[7_4|7/4]]). | ||
26edo's "minor sixth" is very close to phi (i. e., the golden ratio). | |||
==Structure== | ==Structure== | ||
Line 201: | Line 203: | ||
<!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextTocRule:32: --></div> | <!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextTocRule:32: --></div> | ||
<!-- ws:end:WikiTextTocRule:32 --><em>26edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 26 equal parts of 46.154 <a class="wiki_link" href="/cent">cent</a>s each. It tempers out 81/80 in the <a class="wiki_link" href="/5-limit">5-limit</a>, making it a meantone tuning with a very flat fifth. In the <a class="wiki_link" href="/7-limit">7-limit</a>, it tempers out 50/49, 525/512 and 875/864, and supports <a class="wiki_link" href="/Meantone%20family">injera</a>, <a class="wiki_link" href="/Meantone%20family">flattone</a>, <a class="wiki_link" href="/Jubilismic%20clan#Lemba">lemba</a> and <a class="wiki_link" href="/Jubilismic%20clan#Doublewide">doublewide</a> temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the <a class="wiki_link" href="/13-limit">13 odd limit</a> <a class="wiki_link" href="/consistent">consistently</a>. 26edo has a very good approximation of the harmonic seventh (<a class="wiki_link" href="/7_4">7/4</a>).<br /> | <!-- ws:end:WikiTextTocRule:32 --><em>26edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 26 equal parts of 46.154 <a class="wiki_link" href="/cent">cent</a>s each. It tempers out 81/80 in the <a class="wiki_link" href="/5-limit">5-limit</a>, making it a meantone tuning with a very flat fifth. In the <a class="wiki_link" href="/7-limit">7-limit</a>, it tempers out 50/49, 525/512 and 875/864, and supports <a class="wiki_link" href="/Meantone%20family">injera</a>, <a class="wiki_link" href="/Meantone%20family">flattone</a>, <a class="wiki_link" href="/Jubilismic%20clan#Lemba">lemba</a> and <a class="wiki_link" href="/Jubilismic%20clan#Doublewide">doublewide</a> temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the <a class="wiki_link" href="/13-limit">13 odd limit</a> <a class="wiki_link" href="/consistent">consistently</a>. 26edo has a very good approximation of the harmonic seventh (<a class="wiki_link" href="/7_4">7/4</a>).<br /> | ||
<br /> | |||
26edo's &quot;minor sixth&quot; is very close to phi (i. e., the golden ratio).<br /> | |||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:1:&lt;h2&gt; --><h2 id="toc0"><a name="x-Structure"></a><!-- ws:end:WikiTextHeadingRule:1 -->Structure</h2> | <!-- ws:start:WikiTextHeadingRule:1:&lt;h2&gt; --><h2 id="toc0"><a name="x-Structure"></a><!-- ws:end:WikiTextHeadingRule:1 -->Structure</h2> |