Douglas Blumeyer's RTT How-To: Difference between revisions

Cmloegcmluin (talk | contribs)
multicommas: monospace the table contents
Cmloegcmluin (talk | contribs)
remove double spaces
Line 461: Line 461:
<math>
<math>
\left[ \begin{array} {rrr}
\left[ \begin{array} {rrr}
    -4 & -10 \\
-4 & -10 \\
    4 & -1 \\
4 & -1 \\
-1 & 5
-1 & 5
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 507: Line 507:
<math>
<math>
\left[ \begin{array} {rrr}
\left[ \begin{array} {rrr}
    -4 & 4 & -1 \\
-4 & 4 & -1 \\
    -10 & -1 & 5
-10 & -1 & 5
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 516: Line 516:
<math>
<math>
\left[ \begin{array} {rrr}
\left[ \begin{array} {rrr}
    -1 & 4 & -4 \\
-1 & 4 & -4 \\
    5 & -1 & -10
5 & -1 & -10
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 525: Line 525:
<math>
<math>
\left[ \begin{array} {rrr}
\left[ \begin{array} {rrr}
    -1 & 4 & -4 \\
-1 & 4 & -4 \\
    5 & -1 & -10 \\
5 & -1 & -10 \\
\hline
\hline
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
0 & 0 & 1
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 538: Line 538:
<math>
<math>
\left[ \begin{array} {rrr}
\left[ \begin{array} {rrr}
    -1 & 4 & 0 \\
-1 & 4 & 0 \\
    5 & -1 & -30 \\
5 & -1 & -30 \\
\hline
\hline
1 & 0 & -4 \\
1 & 0 & -4 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
0 & 0 & 1
    \end{array} \right]
\end{array} \right]




\left[ \begin{array} {rrr}
\left[ \begin{array} {rrr}
    -1 & 0 & 0 \\
-1 & 0 & 0 \\
    5 & 19 & -30 \\
5 & 19 & -30 \\
\hline
\hline
1 & 4 & -4 \\
1 & 4 & -4 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
0 & 0 & 1
    \end{array} \right]
\end{array} \right]




\left[ \begin{array} {rrr}
\left[ \begin{array} {rrr}
    -1 & 0 & 0 \\
-1 & 0 & 0 \\
    5 & 19 & -570 \\
5 & 19 & -570 \\
\hline
\hline
1 & 4 & -76 \\
1 & 4 & -76 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 19
0 & 0 & 19
    \end{array} \right]
\end{array} \right]




\left[ \begin{array} {rrr}
\left[ \begin{array} {rrr}
    -1 & 0 & \color{lime}0 \\
-1 & 0 & \color{lime}0 \\
    5 & 19 & \color{lime}0 \\
5 & 19 & \color{lime}0 \\
\hline
\hline
1 & 4 & \color{green}44 \\
1 & 4 & \color{green}44 \\
0 & 1 & \color{green}30 \\
0 & 1 & \color{green}30 \\
0 & 0 & \color{green}19
0 & 0 & \color{green}19
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 587: Line 587:
\color{green}30 \\
\color{green}30 \\
\color{green}19
\color{green}19
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 595: Line 595:
\left[ \begin{array} {rrr}
\left[ \begin{array} {rrr}
44 & 30 & 19
44 & 30 & 19
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 603: Line 603:
\left[ \begin{array} {rrr}
\left[ \begin{array} {rrr}
19 & 30 & 44
19 & 30 & 44
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 628: Line 628:
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
0 & 0 & 1
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 640: Line 640:
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 19
0 & 0 & 19
    \end{array} \right]
\end{array} \right]


Line 650: Line 650:
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 19
0 & 0 & 19
    \end{array} \right]
\end{array} \right]


Line 660: Line 660:
0 & 19 & \color{green}0 \\
0 & 19 & \color{green}0 \\
0 & 0 & \color{green}19
0 & 0 & \color{green}19
    \end{array} \right]
\end{array} \right]


Line 670: Line 670:
0 & \color{green}19 & \color{green}0 \\
0 & \color{green}19 & \color{green}0 \\
0 & \color{green}0 & \color{green}19
0 & \color{green}0 & \color{green}19
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 680: Line 680:
\color{green}19 & \color{green}0 \\
\color{green}19 & \color{green}0 \\
\color{green}0 & \color{green}19
\color{green}0 & \color{green}19
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 708: Line 708:
5 & 8 & 12 \\
5 & 8 & 12 \\
7 & 11 & 16
7 & 11 & 16
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 727: Line 727:
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
0 & 0 & 1
    \end{array} \right]
\end{array} \right]


Line 738: Line 738:
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
0 & 0 & 5
    \end{array} \right]
\end{array} \right]


Line 749: Line 749:
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
0 & 0 & 5
    \end{array} \right]
\end{array} \right]


Line 760: Line 760:
0 & 5 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
0 & 0 & 5
    \end{array} \right]
\end{array} \right]


Line 771: Line 771:
0 & 5 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
0 & 0 & 5
    \end{array} \right]
\end{array} \right]


Line 782: Line 782:
0 & 5 & -20 \\
0 & 5 & -20 \\
0 & 0 & 5
0 & 0 & 5
    \end{array} \right]
\end{array} \right]


Line 793: Line 793:
0 & 5 & -4 \\
0 & 5 & -4 \\
0 & 0 & 1
0 & 0 & 1
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 815: Line 815:
5 & 8 & 12 \\
5 & 8 & 12 \\
7 & 11 & 16
7 & 11 & 16
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 836: Line 836:
5 & 8 & 12 \\
5 & 8 & 12 \\
7 & 11 & 16
7 & 11 & 16
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 871: Line 871:
5 & 8 & 12 \\
5 & 8 & 12 \\
7 & 11 & 16
7 & 11 & 16
    \end{array} \right]
\end{array} \right]


Line 878: Line 878:
5 & 8 & 12 \\
5 & 8 & 12 \\
2 & 3 & 4
2 & 3 & 4
    \end{array} \right]
\end{array} \right]


Line 885: Line 885:
1 & 2 & 4 \\
1 & 2 & 4 \\
2 & 3 & 4
2 & 3 & 4
    \end{array} \right]
\end{array} \right]


Line 892: Line 892:
1 & 2 & 4 \\
1 & 2 & 4 \\
1 & 1 & 0
1 & 1 & 0
    \end{array} \right]
\end{array} \right]


Line 899: Line 899:
0 & 1 & 4 \\
0 & 1 & 4 \\
1 & 1 & 0
1 & 1 & 0
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 908: Line 908:
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 1 & 4
0 & 1 & 4
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 927: Line 927:
Two points make a line. By the same logic, three points make a plane. Does this carry any weight in RTT? Yes it does.
Two points make a line. By the same logic, three points make a plane. Does this carry any weight in RTT? Yes it does.


Our hypothesis might be: this represents the entirety of 5-limit JI. If two rank-1 temperaments — each of which can be described as tempering out 2 commas — when unioned result in a rank-2 temperament — which is defined as tempering out 1 comma — then when we union three rank-1 temperaments, we should expect to get a rank-3 temperament, which tempers out 0 commas. The rank-1 temperaments appear as 0D points in PTS but are understood to be a 1D line coming straight at us; the rank-2 temperaments appear as 1D points in PTS but are understood to be 2D planes coming straight at us; the rank-3 temperament appear as the 2D plane of the entire PTS diagram but is understood to be the entire 3D space.
Our hypothesis might be: this represents the entirety of 5-limit JI. If two rank-1 temperaments — each of which can be described as tempering out 2 commas — when unioned result in a rank-2 temperament — which is defined as tempering out 1 comma — then when we union three rank-1 temperaments, we should expect to get a rank-3 temperament, which tempers out 0 commas. The rank-1 temperaments appear as 0D points in PTS but are understood to be a 1D line coming straight at us; the rank-2 temperaments appear as 1D points in PTS but are understood to be 2D planes coming straight at us; the rank-3 temperament appear as the 2D plane of the entire PTS diagram but is understood to be the entire 3D space.


Let’s check our hypothesis using the PTS navigation techniques and matrix math we’ve learned.
Let’s check our hypothesis using the PTS navigation techniques and matrix math we’ve learned.
Line 940: Line 940:
15 & 24 & 35 \\
15 & 24 & 35 \\
22 & 35 & 51
22 & 35 & 51
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 950: Line 950:
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
0 & 0 & 1
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 987: Line 987:
1 & 0 \\
1 & 0 \\
0 & 1
0 & 1
    \end{array} \right]
\end{array} \right]


Line 996: Line 996:
1 & 0 \\
1 & 0 \\
0 & 12
0 & 12
    \end{array} \right]
\end{array} \right]


Line 1,005: Line 1,005:
1 & -19 \\
1 & -19 \\
0 & 12
0 & 12
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 1,057: Line 1,057:
5 & 8 & 12 \\
5 & 8 & 12 \\
7 & 11 & 16 \\
7 & 11 & 16 \\
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 1,066: Line 1,066:
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 1 & 4
0 & 1 & 4
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 1,077: Line 1,077:
1 & 2 & 4 \\
1 & 2 & 4 \\
0 & -1 & -4
0 & -1 & -4
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 1,094: Line 1,094:
1 & 0 & -4 \\
1 & 0 & -4 \\
0 & 1 & 4
0 & 1 & 4
    \end{array} \right]
\end{array} \right]
</math>
</math>


Line 1,160: Line 1,160:
<math>
<math>
\begin{array}{ccc}
\begin{array}{ccc}
  \text{(2,3)} & \text{(2,5)} & \text{(3,5)} \\
\text{(2,3)} & \text{(2,5)} & \text{(3,5)} \\
  \begin{bmatrix}\color{red}1 & \color{lime}0 \\ \color{red}0 & \color{lime}1 \end{bmatrix} & \begin{bmatrix}\color{red}1 & \color{blue}-4 \\ \color{red}0 & \color{blue}4 \end{bmatrix} & \begin{bmatrix}\color{lime}0 & \color{blue}-4 \\ \color{lime}1 & \color{blue}4 \end{bmatrix}
\begin{bmatrix}\color{red}1 & \color{lime}0 \\ \color{red}0 & \color{lime}1 \end{bmatrix} & \begin{bmatrix}\color{red}1 & \color{blue}-4 \\ \color{red}0 & \color{blue}4 \end{bmatrix} & \begin{bmatrix}\color{lime}0 & \color{blue}-4 \\ \color{lime}1 & \color{blue}4 \end{bmatrix}
\end{array}
\end{array}
</math>
</math>
Line 1,204: Line 1,204:
<math>
<math>
\begin{array}{ccc}
\begin{array}{ccc}
  \text{(2,3,5)} &
\text{(2,3,5)} &
  \text{(2,3,7)} &
\text{(2,3,7)} &
  \text{(2,5,7)} &
\text{(2,5,7)} &
  \text{(3,5,7)} \\
\text{(3,5,7)} \\


  \begin{bmatrix}\color{red}1 & \color{lime}0 & \color{blue}1 \\ \color{red}0 & \color{lime}1 & \color{blue}1 \\ \color{red}0 & \color{lime}0 & \color{blue}-2 \end{bmatrix} &
\begin{bmatrix}\color{red}1 & \color{lime}0 & \color{blue}1 \\ \color{red}0 & \color{lime}1 & \color{blue}1 \\ \color{red}0 & \color{lime}0 & \color{blue}-2 \end{bmatrix} &
  \begin{bmatrix}\color{red}1 & \color{lime}0 & \color{magenta}4 \\ \color{red}0 & \color{lime}1 & \color{magenta}-1 \\ \color{red}0 & \color{lime}0 & \color{magenta}3 \end{bmatrix} &
\begin{bmatrix}\color{red}1 & \color{lime}0 & \color{magenta}4 \\ \color{red}0 & \color{lime}1 & \color{magenta}-1 \\ \color{red}0 & \color{lime}0 & \color{magenta}3 \end{bmatrix} &
  \begin{bmatrix}\color{red}1 & \color{blue}1 & \color{magenta}4 \\ \color{red}0 & \color{blue}1 & \color{magenta}-1 \\ \color{red}0 & \color{blue}-2 & \color{magenta}3 \end{bmatrix} &
\begin{bmatrix}\color{red}1 & \color{blue}1 & \color{magenta}4 \\ \color{red}0 & \color{blue}1 & \color{magenta}-1 \\ \color{red}0 & \color{blue}-2 & \color{magenta}3 \end{bmatrix} &
  \begin{bmatrix}\color{lime}0 & \color{blue}1 & \color{magenta}4 \\ \color{lime}1 & \color{blue}1 & \color{magenta}-1 \\ \color{lime}0 & \color{blue}-2 & \color{magenta}3 \end{bmatrix} \\
\begin{bmatrix}\color{lime}0 & \color{blue}1 & \color{magenta}4 \\ \color{lime}1 & \color{blue}1 & \color{magenta}-1 \\ \color{lime}0 & \color{blue}-2 & \color{magenta}3 \end{bmatrix} \\
\end{array}
\end{array}
</math>
</math>