Douglas Blumeyer's RTT How-To: Difference between revisions
Cmloegcmluin (talk | contribs) m tweak wording |
Cmloegcmluin (talk | contribs) →approximating JI: bold first time "generator" is introduced |
||
Line 98: | Line 98: | ||
<ol style="list-style-type:lower-alpha"> | <ol style="list-style-type:lower-alpha"> | ||
<li>'''2, 3, and 5 are not exponents.''' They’re multipliers. To be specific, they’re multipliers of frequency. If the root pitch 1(/1) is 440Hz, then 2(/1) is 880Hz, 3(/1) is 1320Hz, and 5(/1) is 2200Hz.</li> | <li>'''2, 3, and 5 are not exponents.''' They’re multipliers. To be specific, they’re multipliers of frequency. If the root pitch 1(/1) is 440Hz, then 2(/1) is 880Hz, 3(/1) is 1320Hz, and 5(/1) is 2200Hz.</li> | ||
<li>'''12, 19, and 28 are exponents.''' Think of it this way: the map tells us to find some shared number g, called a generator, such that g¹² ≈ 2, g¹⁹ ≈ 3, and g²⁸ ≈ 5. It doesn’t tell us whether all of those approximations can be good at the same time, but it tells us that’s what we’re aiming for. For this map, it happens to be the case that a generator of around 1.059 will be best. Note that this generator is the same thing as one step of our ET. Also note that by thinking this way, we are thinking in terms of frequency (e.g. in Hz), not pitch (e.g. in cents): when we move repeatedly in pitch, we repeatedly add, which can be expressed as multiplication, e.g. 100¢ + 100¢ + 100¢ + 100¢ + 100¢ + 100¢ + 100¢ + 100¢ + 100¢ + 100¢ + 100¢ + 100¢ = 12×100¢ = 1200¢, while when we move repeatedly in frequency, we repeatedly multiply, which can be expressed as exponentiation, e.g. 1.059 × 1.059 × 1.059 × 1.059 × 1.059 × 1.059 × 1.059 × 1.059 × 1.059 × 1.059 × 1.059 × 1.059 = 1.059¹² ≈ 2. We can therefore say that frequency and pitch are two realms separated by one logarithmic order.</li> | <li>'''12, 19, and 28 are exponents.''' Think of it this way: the map tells us to find some shared number g, called a '''generator''', such that g¹² ≈ 2, g¹⁹ ≈ 3, and g²⁸ ≈ 5. It doesn’t tell us whether all of those approximations can be good at the same time, but it tells us that’s what we’re aiming for. For this map, it happens to be the case that a generator of around 1.059 will be best. Note that this generator is the same thing as one step of our ET. Also note that by thinking this way, we are thinking in terms of frequency (e.g. in Hz), not pitch (e.g. in cents): when we move repeatedly in pitch, we repeatedly add, which can be expressed as multiplication, e.g. 100¢ + 100¢ + 100¢ + 100¢ + 100¢ + 100¢ + 100¢ + 100¢ + 100¢ + 100¢ + 100¢ + 100¢ = 12×100¢ = 1200¢, while when we move repeatedly in frequency, we repeatedly multiply, which can be expressed as exponentiation, e.g. 1.059 × 1.059 × 1.059 × 1.059 × 1.059 × 1.059 × 1.059 × 1.059 × 1.059 × 1.059 × 1.059 × 1.059 = 1.059¹² ≈ 2. We can therefore say that frequency and pitch are two realms separated by one logarithmic order.</li> | ||
<li>'''logarithms give exponents.''' A logarithm answers the question, “What exponent do I raise this base to in order to get this value?” So when I say 12 = log<sub>g</sub>2 I’m saying there’s some base g which to the twelfth power gives 2, and when I say 19 = log<sub>g</sub>3 I’m saying there’s some base g which to the nineteenth power gives 3, etc. (That’s how I found 1.059, by the way; if g¹² ≈ 2, and I take the twelfth root of both sides, I get g = ¹²√2 ≈ 1.05946, and I could have just easily taken ¹⁹√3 ≈ 1.05952 or ²⁸√5 ≈ 1.05916).</li> | <li>'''logarithms give exponents.''' A logarithm answers the question, “What exponent do I raise this base to in order to get this value?” So when I say 12 = log<sub>g</sub>2 I’m saying there’s some base g which to the twelfth power gives 2, and when I say 19 = log<sub>g</sub>3 I’m saying there’s some base g which to the nineteenth power gives 3, etc. (That’s how I found 1.059, by the way; if g¹² ≈ 2, and I take the twelfth root of both sides, I get g = ¹²√2 ≈ 1.05946, and I could have just easily taken ¹⁹√3 ≈ 1.05952 or ²⁸√5 ≈ 1.05916).</li> | ||
</ol> | </ol> |