Douglas Blumeyer's RTT How-To: Difference between revisions
Cmloegcmluin (talk | contribs) m →scale trees: use math fractions |
Cmloegcmluin (talk | contribs) →generators: math fractions |
||
Line 368: | Line 368: | ||
We briefly looked at generators earlier. We saw how the generator for 12-ET was about 1.059, because repeated movement is like repeated multiplication (1.059 × 1.059 × 1.059 ...) and 1.059¹² ≈ 2, 1.059¹⁹ ≈ 3, and 1.059²⁸ ≈ 5. This meantone generator is the same basic idea, but there’s a couple important differences we need to cover. | We briefly looked at generators earlier. We saw how the generator for 12-ET was about 1.059, because repeated movement is like repeated multiplication (1.059 × 1.059 × 1.059 ...) and 1.059¹² ≈ 2, 1.059¹⁹ ≈ 3, and 1.059²⁸ ≈ 5. This meantone generator is the same basic idea, but there’s a couple important differences we need to cover. | ||
First of all, and this difference is superficial, it’s in a different format. We were expressing 12-ET’s generator 1.059 as a frequency multiplier; it’s like 2, 3, or 5, and this could be measured in Hz, say, by multiplying by 440 if A4 was our 1/1 (1.059 away from A is 466Hz, which is #A). But the meantone generators we’re looking at now in forms like | First of all, and this difference is superficial, it’s in a different format. We were expressing 12-ET’s generator 1.059 as a frequency multiplier; it’s like 2, 3, or 5, and this could be measured in Hz, say, by multiplying by 440 if A4 was our 1/1 (1.059 away from A is 466Hz, which is #A). But the meantone generators we’re looking at now in forms like <span><math>\frac 25</math></span>, <span><math>\frac 37</math></span>, or <span><math>\frac{5}{12}</math></span>, are expressed as fractional octaves, i.e. they’re in terms of pitch, something that could be measured in cents if we multiplied by 1200 (2/5 × 1200¢ = 480¢). We have a special way of writing fractional octaves, and that’s with a backslash instead of a slash, like this: 2\5, 3\7, 5\12. | ||
Cents and Hertz values can readily be converted between one form and the other, so it’s the second difference which is more important. It’s their size. If we do convert 12-ET’s generator to cents so we can compare it with meantone’s generator at 12-ET, we can see that 12-ET’s generator is 100¢ (log₂1.059 × 1200¢ = 100¢) while meantone’s generator at 12-ET is 500¢ (5/12 × 1200¢ = 500¢). What is the explanation for this difference? | Cents and Hertz values can readily be converted between one form and the other, so it’s the second difference which is more important. It’s their size. If we do convert 12-ET’s generator to cents so we can compare it with meantone’s generator at 12-ET, we can see that 12-ET’s generator is 100¢ (log₂1.059 × 1200¢ = 100¢) while meantone’s generator at 12-ET is 500¢ (5/12 × 1200¢ = 500¢). What is the explanation for this difference? | ||
Line 397: | Line 397: | ||
The structure when you stop iterating the meantone generator with five notes is called meantone[5]. If you were to use the entirety of 12-ET as meantone then that’d be meantone[12]. But you can also realize meantone[12] in 19-ET; in the former you have only one step size, but in the latter you have two. You can’t realize meantone[19] in 12-ET, but you could also realize it in 31-ET. | The structure when you stop iterating the meantone generator with five notes is called meantone[5]. If you were to use the entirety of 12-ET as meantone then that’d be meantone[12]. But you can also realize meantone[12] in 19-ET; in the former you have only one step size, but in the latter you have two. You can’t realize meantone[19] in 12-ET, but you could also realize it in 31-ET. | ||
=== periods and generators === | === periods and generators === |