|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | '''2187/2048''' |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:spt3125|spt3125]] and made on <tt>2014-06-30 21:39:24 UTC</tt>.<br>
| |
| : The original revision id was <tt>515319832</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**2187/2048**
| |
| |-11 7> | | |-11 7> |
| | |
| 113.6850 cents | | 113.6850 cents |
| [[media type="file" key="jid_2187_2048_pluck_adu_dr220.mp3"]] [[file:xenharmonic/jid_2187_2048_pluck_adu_dr220.mp3|sound sample]]
| |
|
| |
|
| The //apotome//, also known as the Pythagorean chromatic semitone or the Pythagorean major semitone, is the interval 3^7/2^11 = 2187/2048 which is the chromatic semitone in the Pythagorean (3-limit) version of the diatonic scale. Unlike the situation in meantone tunings, it is larger, not smaller, than the corresponding diatonic semitone, which is the Pythagorean minor second of [[256_243|256/243]]. It measures about 113.7¢ and can be generated by stacking seven [[3_2|3/2]] perfect fifths and octave-reducing the resulting interval. | | [[File:jid_2187_2048_pluck_adu_dr220.mp3]] [[:File:jid_2187_2048_pluck_adu_dr220.mp3|sound sample]] |
| | |
| | The ''apotome'', also known as the Pythagorean chromatic semitone or the Pythagorean major semitone, is the interval 3^7/2^11 = 2187/2048 which is the chromatic semitone in the Pythagorean (3-limit) version of the diatonic scale. Unlike the situation in meantone tunings, it is larger, not smaller, than the corresponding diatonic semitone, which is the Pythagorean minor second of [[256/243|256/243]]. It measures about 113.7¢ and can be generated by stacking seven [[3/2|3/2]] perfect fifths and octave-reducing the resulting interval. |
|
| |
|
| See: [[Gallery of Just Intervals]], [[comma]]</pre></div> | | See: [[Gallery_of_Just_Intervals|Gallery of Just Intervals]], [[Comma|comma]] |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>2187_2048</title></head><body><strong>2187/2048</strong><br />
| |
| |-11 7&gt;<br />
| |
| 113.6850 cents<br />
| |
| <!-- ws:start:WikiTextMediaRule:0:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/file-audio/jid_2187_2048_pluck_adu_dr220.mp3?h=20&amp;w=240&quot; class=&quot;WikiMedia WikiMediaFile&quot; id=&quot;wikitext@@media@@type=&amp;quot;file&amp;quot; key=&amp;quot;jid_2187_2048_pluck_adu_dr220.mp3&amp;quot;&quot; title=&quot;Local Media File&quot;height=&quot;20&quot; width=&quot;240&quot;/&gt; --><embed src="/s/mediaplayer.swf" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" quality="high" width="240" height="20" wmode="transparent" flashvars="file=http%253A%252F%252Fxenharmonic.wikispaces.com%252Ffile%252Fview%252Fjid_2187_2048_pluck_adu_dr220.mp3?file_extension=mp3&autostart=false&repeat=false&showdigits=true&showfsbutton=false&width=240&height=20"></embed><!-- ws:end:WikiTextMediaRule:0 --> <a href="http://xenharmonic.wikispaces.com/file/view/jid_2187_2048_pluck_adu_dr220.mp3/515315580/jid_2187_2048_pluck_adu_dr220.mp3" onclick="ws.common.trackFileLink('http://xenharmonic.wikispaces.com/file/view/jid_2187_2048_pluck_adu_dr220.mp3/515315580/jid_2187_2048_pluck_adu_dr220.mp3');">sound sample</a><br />
| |
| <br />
| |
| The <em>apotome</em>, also known as the Pythagorean chromatic semitone or the Pythagorean major semitone, is the interval 3^7/2^11 = 2187/2048 which is the chromatic semitone in the Pythagorean (3-limit) version of the diatonic scale. Unlike the situation in meantone tunings, it is larger, not smaller, than the corresponding diatonic semitone, which is the Pythagorean minor second of <a class="wiki_link" href="/256_243">256/243</a>. It measures about 113.7¢ and can be generated by stacking seven <a class="wiki_link" href="/3_2">3/2</a> perfect fifths and octave-reducing the resulting interval.<br />
| |
| <br />
| |
| See: <a class="wiki_link" href="/Gallery%20of%20Just%20Intervals">Gallery of Just Intervals</a>, <a class="wiki_link" href="/comma">comma</a></body></html></pre></div>
| |