Harmonotonic tuning: Difference between revisions

Cmloegcmluin (talk | contribs)
No edit summary
Cmloegcmluin (talk | contribs)
Line 122: Line 122:
{| class="wikitable"
{| class="wikitable"
|+Table of monotonic tunings
|+Table of monotonic tunings
! colspan="2" rowspan="2" style="background-color: white; border-left: 1px solid white; border-top: 1px solid white;" |
! colspan="3" rowspan="2" style="background-color: white; border-left: 1px solid white; border-top: 1px solid white;" |
! colspan="3" |tuning type
! colspan="5" |tuning type
|-
|-
! arithmetic
! arithmetic
rational  
rational  
!
! arithmetic
! arithmetic
irrational  
irrational  
!
! non-arithmetic
! non-arithmetic
irrational
irrational
|-
|-
! rowspan="15" |'''tuning'''
! rowspan="17" |'''tuning'''
'''shape'''
'''shape'''
! rowspan="6" |'''decreasing'''
! rowspan="6" |'''decreasing'''
'''step size'''
'''step size'''
|'''[[Overtone series|overtone series, or harmonic series]]'''||[[AFS|'''shifted overtone series''' (± frequency) ''(equivalent to AFS)'']]
!open-ended
|'''[[Overtone series|overtone series, or harmonic series]]'''
!
|[[AFS|'''shifted overtone series''' (± frequency) ''(equivalent to AFS)'']]
!
| [[Powharmonic series|'''stretched/compressed overtone series''' (exponentiated frequency, multiplied pitch) ''(equivalent to powharmonic series)'']]
| [[Powharmonic series|'''stretched/compressed overtone series''' (exponentiated frequency, multiplied pitch) ''(equivalent to powharmonic series)'']]
|-
|-
! rowspan="2" |division
|[[Overtone scale#Over-n Scales|'''overtone mode, or over-n scale''' ''(equivalent to n-ODO)'']]
|[[Overtone scale#Over-n Scales|'''overtone mode, or over-n scale''' ''(equivalent to n-ODO)'']]
|
! rowspan="2" |
|
| rowspan="2" |[[EFD|'''n-EFDp:''' <u>n</u> <u>e</u>qual <u>f</u>requency <u>d</u>ivisions of interval <u>p</u>]]
! rowspan="2" |
| rowspan="2" |
|-
|-
|[[OD|'''n-ODp:''' <u>n</u> <u>o</u>tonal <u>d</u>ivisions of interval <u>p</u>]]
|[[OD|'''n-ODp:''' <u>n</u> <u>o</u>tonal <u>d</u>ivisions of interval <u>p</u>]]
|[[EFD|'''n-EFDp:''' <u>n</u> <u>e</u>qual <u>f</u>requency <u>d</u>ivisions of interval <u>p</u>]]
|
|-
|-
!sequence
|[[OS|'''(n-)OSp:''' (<u>n</u> pitches of an) <u>o</u>tonal <u>s</u>equence adding by <u>p</u>]]
|[[OS|'''(n-)OSp:''' (<u>n</u> pitches of an) <u>o</u>tonal <u>s</u>equence adding by <u>p</u>]]
!
|[[AFS|'''(n-)AFSp:''' (<u>n</u> pitches of an) <u>a</u>rithmetic <u>f</u>requency <u>s</u>equence adding by <u>p</u>]]
|[[AFS|'''(n-)AFSp:''' (<u>n</u> pitches of an) <u>a</u>rithmetic <u>f</u>requency <u>s</u>equence adding by <u>p</u>]]
!
|
|
|-
|-
|
! rowspan="2" |other open
|
| rowspan="2" |
! rowspan="2" |
| rowspan="2" |
! rowspan="2" |
|'''[[Powharmonic series|c-powharmonic series]]''' exponent c
|'''[[Powharmonic series|c-powharmonic series]]''' exponent c
|-
|-
|
|
|'''[[Logharmonic series|b-logharmonic series]]''' base b
|'''[[Logharmonic series|b-logharmonic series]]''' base b
|-
! colspan="7" |
|-
|-
! rowspan="3" |'''equal'''
! rowspan="3" |'''equal'''
'''step size'''
'''step size'''
!open-ended
|'''1D [[Harmonic Lattice Diagram|JI lattice]]'''
|'''1D [[Harmonic Lattice Diagram|JI lattice]]'''
| [[Tour of Regular Temperaments#Equal temperaments .28Rank-1 temperaments.29|'''rank-1 temperament''']] || rowspan="3" style="background-color: white; border-right: 1px solid white;" |  
!
|[[Tour of Regular Temperaments#Equal temperaments .28Rank-1 temperaments.29|'''rank-1 temperament''']]
!
| rowspan="3" style="background-color: white; border-right: 1px solid white;" |  
|-
|-
!division
|
|
!
|[[EPD|'''n-EDp:''' <u>n</u> <u>e</u>qual (pitch) <u>d</u>ivisions of interval <u>p</u> (e.g. 12-EDO) ''(equivalent to rank-1 temperament of p/n)'']]
|[[EPD|'''n-EDp:''' <u>n</u> <u>e</u>qual (pitch) <u>d</u>ivisions of interval <u>p</u> (e.g. 12-EDO) ''(equivalent to rank-1 temperament of p/n)'']]
!
|-
|-
!sequence
|[[AS|'''(n-)ASp:''' (<u>n</u> pitches of an) <u>a</u>mbitonal <u>s</u>equence adding by <u>p</u> ''(equivalent to 1D JI lattice of p)'']]
|[[AS|'''(n-)ASp:''' (<u>n</u> pitches of an) <u>a</u>mbitonal <u>s</u>equence adding by <u>p</u> ''(equivalent to 1D JI lattice of p)'']]
!
|[[APS|'''(n-)APSp:''' (<u>n</u> pitches of an) <u>a</u>rithmetic <u>p</u>itch <u>s</u>equence adding by <u>p</u> ''(equivalent to rank-1 temperament with generator p)'']]
|[[APS|'''(n-)APSp:''' (<u>n</u> pitches of an) <u>a</u>rithmetic <u>p</u>itch <u>s</u>equence adding by <u>p</u> ''(equivalent to rank-1 temperament with generator p)'']]
!
|-
! colspan="7" |
|-
|-
! rowspan="6" |'''increasing'''
! rowspan="6" |'''increasing'''
'''step size'''
'''step size'''
| '''[[wikipedia:Undertone_series|undertone series, or subharmonic series]]''' || [[ALS|'''shifted undertone series''' (± frequency) ''(equivalent to ALS)'']] || [[Powharmonic series|'''stretched/compressed undertone series''' (exponentiated frequency, multiplied pitch)  ''(equivalent to subpowharmonic series)'']]
!open-ended
|'''[[wikipedia:Undertone_series|undertone series, or subharmonic series]]'''
!
|[[ALS|'''shifted undertone series''' (± frequency) ''(equivalent to ALS)'']]
!
|[[Powharmonic series|'''stretched/compressed undertone series''' (exponentiated frequency, multiplied pitch)  ''(equivalent to subpowharmonic series)'']]
|-
|-
! rowspan="2" |division
|[[Overtone scale#Next Steps|'''undertone mode, or under-n scale''' ''(equivalent to n-UDO)'']]
|[[Overtone scale#Next Steps|'''undertone mode, or under-n scale''' ''(equivalent to n-UDO)'']]
|
! rowspan="2" |
|
| rowspan="2" |[[ELD|'''n-ELDp:''' <u>n</u> <u>e</u>qual <u>l</u>ength <u>d</u>ivisions of interval <u>p</u>]]
! rowspan="2" |
| rowspan="2" |
|-
|-
|[[UD|'''n-UDp:''' <u>n</u> <u>u</u>tonal <u>d</u>ivisions of interval <u>p</u>]]
|[[UD|'''n-UDp:''' <u>n</u> <u>u</u>tonal <u>d</u>ivisions of interval <u>p</u>]]
|[[ELD|'''n-ELDp:''' <u>n</u> <u>e</u>qual <u>l</u>ength <u>d</u>ivisions of interval <u>p</u>]]
|
|-
|-
!sequence
|[[US|'''(n-)USp:''' (<u>n</u> pitches of a) <u>u</u>tonal <u>s</u>equence adding by <u>p</u>]]
|[[US|'''(n-)USp:''' (<u>n</u> pitches of a) <u>u</u>tonal <u>s</u>equence adding by <u>p</u>]]
!
|[[ALS|'''(n-)ALSp:''' (<u>n</u> pitches of an) <u>a</u>rithmetic <u>l</u>ength <u>s</u>equence adding by <u>p</u>]]
|[[ALS|'''(n-)ALSp:''' (<u>n</u> pitches of an) <u>a</u>rithmetic <u>l</u>ength <u>s</u>equence adding by <u>p</u>]]
!
|
|
|-
|-
|
! rowspan="2" |other open
|
| rowspan="2" |
! rowspan="2" |
| rowspan="2" |
! rowspan="2" |
|'''[[Powharmonic series|c-subpowharmonic series]]''' exponent c
|'''[[Powharmonic series|c-subpowharmonic series]]''' exponent c
|-
|-
|
|
|'''[[Logharmonic series|b-sublogharmonic series]]''' base b
|'''[[Logharmonic series|b-sublogharmonic series]]''' base b
|}
|}