17edo neutral scale: Difference between revisions

Wikispaces>Kosmorsky
**Imported revision 245828069 - Original comment: **
Wikispaces>Kosmorsky
**Imported revision 245828117 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Kosmorsky|Kosmorsky]] and made on <tt>2011-08-14 00:11:05 UTC</tt>.<br>
: This revision was by author [[User:Kosmorsky|Kosmorsky]] and made on <tt>2011-08-14 00:11:26 UTC</tt>.<br>
: The original revision id was <tt>245828069</tt>.<br>
: The original revision id was <tt>245828117</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 115: Line 115:


==Some brief note on the 3, 7 and 10 note MOS.==  
==Some brief note on the 3, 7 and 10 note MOS.==  
==You can also take call the neutral sixth the generator, which I personally favour as it is an (approximate) harmonic rather than a subharmonic. But that's because it's how I use it, you might not. If you see it this way, the 3rd harmonic is harmonically opposite to the 13th harmonic, because, (13/8)^2 ~ 4/3, the perfect fourth being an upside down perfect fifth. You might also find that the 10-note scale can be formed by two 17-tone pythagoresque pentatonic scales a neutral interval apart, implying something of a different approach. And one of the loveliest things I find about them is the ease with which one can play 8:11:13 chords, so there are some frightening blues licks in this decatonic scale. R'lyeh blues anyone? (Note that you will come up with similarly structured scales by using //other neutral thirds// as generators, although some of them will sound quite different. A neutral sixth about sharp of the 13th harmonic leads to 7L+3s like in 17-tone, whereas going flat of the 13th harmonic can lead to 7s+3L. (This boast is possible because 10-edo sits right on it.) Some equal divisions of the octave containing neutral scales: [[10edo]], [[13edo]], [[16edo]], [[19edo]], [[24edo]], [[31edo]]....)== </pre></div>
You can also take call the neutral sixth the generator, which I personally favour as it is an (approximate) harmonic rather than a subharmonic. But that's because it's how I use it, you might not. If you see it this way, the 3rd harmonic is harmonically opposite to the 13th harmonic, because, (13/8)^2 ~ 4/3, the perfect fourth being an upside down perfect fifth. You might also find that the 10-note scale can be formed by two 17-tone pythagoresque pentatonic scales a neutral interval apart, implying something of a different approach. And one of the loveliest things I find about them is the ease with which one can play 8:11:13 chords, so there are some frightening blues licks in this decatonic scale. R'lyeh blues anyone? (Note that you will come up with similarly structured scales by using //other neutral thirds// as generators, although some of them will sound quite different. A neutral sixth about sharp of the 13th harmonic leads to 7L+3s like in 17-tone, whereas going flat of the 13th harmonic can lead to 7s+3L. (This boast is possible because 10-edo sits right on it.) Some equal divisions of the octave containing neutral scales: [[10edo]], [[13edo]], [[16edo]], [[19edo]], [[24edo]], [[31edo]]....) </pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;17edo neutral scale&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x17edo neutral scale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;17edo neutral scale&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;17edo neutral scale&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x17edo neutral scale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;17edo neutral scale&lt;/h1&gt;
Line 506: Line 506:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="x17edo neutral scale-Some brief note on the 3, 7 and 10 note MOS."&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Some brief note on the 3, 7 and 10 note MOS.&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="x17edo neutral scale-Some brief note on the 3, 7 and 10 note MOS."&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Some brief note on the 3, 7 and 10 note MOS.&lt;/h2&gt;
  &lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="x17edo neutral scale-You can also take call the neutral sixth the generator, which I personally favour as it is an (approximate) harmonic rather than a subharmonic. But that's because it's how I use it, you might not. If you see it this way, the 3rd harmonic is harmonically opposite to the 13th harmonic, because, (13/8)^2 ~ 4/3, the perfect fourth being an upside down perfect fifth.  You might also find that the 10-note scale can be formed by two 17-tone pythagoresque pentatonic scales a neutral interval apart, implying something of a different approach. And one of the loveliest things I find about them is the ease with which one can play 8:11:13 chords, so there are some frightening blues licks in this decatonic scale. R'lyeh blues anyone?  (Note that you will come up with similarly structured scales by using other neutral thirds as generators, although some of them will sound quite different. A neutral sixth about sharp of the 13th harmonic leads to 7L+3s like in 17-tone, whereas going flat of the 13th harmonic can lead to 7s+3L. (This boast is possible because 10-edo sits right on it.) Some equal divisions of the octave containing neutral scales: 10edo, 13edo, 16edo, 19edo, 24edo, 31edo....)"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;You can also take call the neutral sixth the generator, which I personally favour as it is an (approximate) harmonic rather than a subharmonic. But that's because it's how I use it, you might not. If you see it this way, the 3rd harmonic is harmonically opposite to the 13th harmonic, because, (13/8)^2 ~ 4/3, the perfect fourth being an upside down perfect fifth. You might also find that the 10-note scale can be formed by two 17-tone pythagoresque pentatonic scales a neutral interval apart, implying something of a different approach. And one of the loveliest things I find about them is the ease with which one can play 8:11:13 chords, so there are some frightening blues licks in this decatonic scale. R'lyeh blues anyone? (Note that you will come up with similarly structured scales by using &lt;em&gt;other neutral thirds&lt;/em&gt; as generators, although some of them will sound quite different. A neutral sixth about sharp of the 13th harmonic leads to 7L+3s like in 17-tone, whereas going flat of the 13th harmonic can lead to 7s+3L. (This boast is possible because 10-edo sits right on it.) Some equal divisions of the octave containing neutral scales: &lt;a class="wiki_link" href="/10edo"&gt;10edo&lt;/a&gt;, &lt;a class="wiki_link" href="/13edo"&gt;13edo&lt;/a&gt;, &lt;a class="wiki_link" href="/16edo"&gt;16edo&lt;/a&gt;, &lt;a class="wiki_link" href="/19edo"&gt;19edo&lt;/a&gt;, &lt;a class="wiki_link" href="/24edo"&gt;24edo&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt;....)&lt;/h2&gt;
  You can also take call the neutral sixth the generator, which I personally favour as it is an (approximate) harmonic rather than a subharmonic. But that's because it's how I use it, you might not. If you see it this way, the 3rd harmonic is harmonically opposite to the 13th harmonic, because, (13/8)^2 ~ 4/3, the perfect fourth being an upside down perfect fifth. You might also find that the 10-note scale can be formed by two 17-tone pythagoresque pentatonic scales a neutral interval apart, implying something of a different approach. And one of the loveliest things I find about them is the ease with which one can play 8:11:13 chords, so there are some frightening blues licks in this decatonic scale. R'lyeh blues anyone? (Note that you will come up with similarly structured scales by using &lt;em&gt;other neutral thirds&lt;/em&gt; as generators, although some of them will sound quite different. A neutral sixth about sharp of the 13th harmonic leads to 7L+3s like in 17-tone, whereas going flat of the 13th harmonic can lead to 7s+3L. (This boast is possible because 10-edo sits right on it.) Some equal divisions of the octave containing neutral scales: &lt;a class="wiki_link" href="/10edo"&gt;10edo&lt;/a&gt;, &lt;a class="wiki_link" href="/13edo"&gt;13edo&lt;/a&gt;, &lt;a class="wiki_link" href="/16edo"&gt;16edo&lt;/a&gt;, &lt;a class="wiki_link" href="/19edo"&gt;19edo&lt;/a&gt;, &lt;a class="wiki_link" href="/24edo"&gt;24edo&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt;....)&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;/body&gt;&lt;/html&gt;</pre></div>