User:AthiTrydhen/15-limit tonality diamond: Difference between revisions

Wikispaces>Praimhin
**Imported revision 588772064 - Original comment: **
Wikispaces>Praimhin
**Imported revision 588772130 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Praimhin|Praimhin]] and made on <tt>2016-08-04 01:12:44 UTC</tt>.<br>
: This revision was by author [[User:Praimhin|Praimhin]] and made on <tt>2016-08-04 01:23:52 UTC</tt>.<br>
: The original revision id was <tt>588772064</tt>.<br>
: The original revision id was <tt>588772130</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 19: Line 19:


The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:
The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:
* 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 5:3, 14:9, 11:9, 13:9
* Transformation //R//: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 5:3, 14:9, 11:9, 13:9
* 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 11:8, 7:4, 13:8
* Transformation //S//: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 11:8, 7:4, 13:8
* 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 7:4, 13:8, 11:8
* Transformation //S'//: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 3:2, 5:4, 7:4, 13:8, 11:8
* 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 8:5, 8:7, 16:11, 16:13
* Transformation //T//: 3:2, 5:4, 7:4, 11:8, 13:8 -&gt; 4:3, 8:5, 8:7, 16:11, 16:13
 
These generators have the relations //R//² = //S//² = //T//² = //S//'² = I, (//SS//')³ = I, //RS// = //SR//, //RS//' = //S//'//R//, and //T// commutes with the three other generators. Thus the symmetry group is isomorphic to //S//₃ × //C//₂².


===Orbits and Invariant Subsets===  
===Orbits and Invariant Subsets===  
[to be included]</pre></div>
The [[Hendrix diamond]] is invariant under action by //R,// //S//' and //T//, and the images of the action of //S// and //S//² on the Hendrix diamond are the [[11-Hendrix diamond]] and [[13-Hendrix diamond]] respectively.
 
Two other interesting invariant subsets are the 5-limit tonality diamond and the tonality diamond constructed from the harmonics 1, 3, 5, 9 and 15.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;15-limit tonality diamond&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;strong&gt;15-limit tonality diamond&lt;/strong&gt; has the following notes:&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;15-limit tonality diamond&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;strong&gt;15-limit tonality diamond&lt;/strong&gt; has the following notes:&lt;br /&gt;
Line 181: Line 185:
  &lt;br /&gt;
  &lt;br /&gt;
The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:&lt;br /&gt;
The symmetry group of the 15-limit tonality diamond has 24 elements. The following are its generators:&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 4:3, 5:3, 14:9, 11:9, 13:9&lt;/li&gt;&lt;li&gt;3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 3:2, 5:4, 11:8, 7:4, 13:8&lt;/li&gt;&lt;li&gt;3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 3:2, 5:4, 7:4, 13:8, 11:8&lt;/li&gt;&lt;li&gt;3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 4:3, 8:5, 8:7, 16:11, 16:13&lt;/li&gt;&lt;/ul&gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;Transformation &lt;em&gt;R&lt;/em&gt;: 3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 4:3, 5:3, 14:9, 11:9, 13:9&lt;/li&gt;&lt;li&gt;Transformation &lt;em&gt;S&lt;/em&gt;: 3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 3:2, 5:4, 11:8, 7:4, 13:8&lt;/li&gt;&lt;li&gt;Transformation &lt;em&gt;S'&lt;/em&gt;: 3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 3:2, 5:4, 7:4, 13:8, 11:8&lt;/li&gt;&lt;li&gt;Transformation &lt;em&gt;T&lt;/em&gt;: 3:2, 5:4, 7:4, 11:8, 13:8 -&amp;gt; 4:3, 8:5, 8:7, 16:11, 16:13&lt;/li&gt;&lt;/ul&gt;&lt;br /&gt;
These generators have the relations &lt;em&gt;R&lt;/em&gt;² = &lt;em&gt;S&lt;/em&gt;² = &lt;em&gt;T&lt;/em&gt;² = &lt;em&gt;S&lt;/em&gt;'² = I, (&lt;em&gt;SS&lt;/em&gt;')³ = I, &lt;em&gt;RS&lt;/em&gt; = &lt;em&gt;SR&lt;/em&gt;, &lt;em&gt;RS&lt;/em&gt;' = &lt;em&gt;S&lt;/em&gt;'&lt;em&gt;R&lt;/em&gt;, and &lt;em&gt;T&lt;/em&gt; commutes with the three other generators. Thus the symmetry group is isomorphic to &lt;em&gt;S&lt;/em&gt;₃ × &lt;em&gt;C&lt;/em&gt;₂².&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x-Symmetry group-Orbits and Invariant Subsets"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Orbits and Invariant Subsets&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x-Symmetry group-Orbits and Invariant Subsets"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Orbits and Invariant Subsets&lt;/h3&gt;
  [to be included]&lt;/body&gt;&lt;/html&gt;</pre></div>
  The &lt;a class="wiki_link" href="/Hendrix%20diamond"&gt;Hendrix diamond&lt;/a&gt; is invariant under action by &lt;em&gt;R,&lt;/em&gt; &lt;em&gt;S&lt;/em&gt;' and &lt;em&gt;T&lt;/em&gt;, and the images of the action of &lt;em&gt;S&lt;/em&gt; and &lt;em&gt;S&lt;/em&gt;² on the Hendrix diamond are the &lt;a class="wiki_link" href="/11-Hendrix%20diamond"&gt;11-Hendrix diamond&lt;/a&gt; and &lt;a class="wiki_link" href="/13-Hendrix%20diamond"&gt;13-Hendrix diamond&lt;/a&gt; respectively.&lt;br /&gt;
&lt;br /&gt;
Two other interesting invariant subsets are the 5-limit tonality diamond and the tonality diamond constructed from the harmonics 1, 3, 5, 9 and 15.&lt;/body&gt;&lt;/html&gt;</pre></div>