13edo: Difference between revisions

Wikispaces>hstraub
**Imported revision 243200999 - Original comment: **
Wikispaces>igliashon
**Imported revision 243300347 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2011-07-28 02:51:24 UTC</tt>.<br>
: This revision was by author [[User:igliashon|igliashon]] and made on <tt>2011-07-28 17:10:31 UTC</tt>.<br>
: The original revision id was <tt>243200999</tt>.<br>
: The original revision id was <tt>243300347</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 11: Line 11:
=13 tone equal temperament / 13edo=  
=13 tone equal temperament / 13edo=  
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).
|| Degree || Cents ||= Approximate Ratios* || Note Name ||
|| Degree || Cents ||= Approximate Ratios* || 6L1s Names ||
|| 0 || 0 ||= 1/1 || C ||
|| 0 || 0 ||= 1/1 || C ||
|| 1 || 92.3077 ||= 55/52, 117/110, 26/25 || C#/Db ||
|| 1 || 92.3077 ||= 22/21, 55/52, 117/110, 26/25 || C#/Db ||
|| 2 || 184.6154 ||= 10/9, 9/8, 11/10 || D ||
|| 2 || 184.6154 ||= 10/9, 9/8, 11/10 || D ||
|| 3 || 276.9231 ||= 13/11 || D#/Eb ||
|| 3 || 276.9231 ||= 13/11, 7/6 || D#/Eb ||
|| 4 || 369.2308 ||= 5/4, 16/13, 11/9 || E ||
|| 4 || 369.2308 ||= 5/4, 16/13, 11/9, 26/21 || E ||
|| 5 || 461.5385 ||= 13/10 || E#/Fb ||
|| 5 || 461.5385 ||= 13/10, 21/16 || E#/Fb ||
|| 6 || 553.84 ||= 11/8, 18/13 || F ||
|| 6 || 553.84 ||= 11/8, 18/13 || F ||
|| 7 || 646.15 ||= 16/11, 13/9 || F#/Gb ||
|| 7 || 646.15 ||= 16/11, 13/9 || F#/Gb ||
|| 8 || 738.46 ||= 20/13 || G ||
|| 8 || 738.46 ||= 20/13, 32/21 || G ||
|| 9 || 830.77 ||= 8/5, 13/8, 18/11 || G#/Ab ||
|| 9 || 830.77 ||= 8/5, 13/8, 18/11, 21/13 || G#/Ab ||
|| 10 || 923.08 ||= 22/13 || A ||
|| 10 || 923.08 ||= 22/13, 12/7 || A ||
|| 11 || 1015.38 ||= 9/5, 16/9, 20/11 || A#/Bb ||
|| 11 || 1015.38 ||= 9/5, 16/9, 20/11 || A#/Bb ||
|| 12 || 1107.69 ||= 25/13, 104/55 || B/Cb ||
|| 12 || 1107.69 ||= 21/11, 25/13, 104/55 || B/Cb ||
|| 13 || 1200 ||= 2/1 || C/B# ||
|| 13 || 1200 ||= 2/1 || C/B# ||
*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.
*based on treating 13-EDO as a 2.5.9.11.13.21 subgroup temperament; other approaches are possible.
based on the 6L1s heptatonic scale; see below.


F-
=Harmony in 13edo=  
=Harmony in 13edo=  
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a "stack of 3rds" the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the [[k*N subgroups|2*13 subgroup]] 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a "stack of 3rds" the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the [[k*N subgroups|2*13 subgroup]] 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.
Line 88: Line 88:
         &lt;td style="text-align: center;"&gt;Approximate Ratios*&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Approximate Ratios*&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Note Name&lt;br /&gt;
         &lt;td&gt;6L1s Names&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 106: Line 106:
         &lt;td&gt;92.3077&lt;br /&gt;
         &lt;td&gt;92.3077&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;55/52, 117/110, 26/25&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;22/21, 55/52, 117/110, 26/25&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;C#/Db&lt;br /&gt;
         &lt;td&gt;C#/Db&lt;br /&gt;
Line 126: Line 126:
         &lt;td&gt;276.9231&lt;br /&gt;
         &lt;td&gt;276.9231&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;13/11&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;13/11, 7/6&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;D#/Eb&lt;br /&gt;
         &lt;td&gt;D#/Eb&lt;br /&gt;
Line 136: Line 136:
         &lt;td&gt;369.2308&lt;br /&gt;
         &lt;td&gt;369.2308&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;5/4, 16/13, 11/9&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;5/4, 16/13, 11/9, 26/21&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;E&lt;br /&gt;
         &lt;td&gt;E&lt;br /&gt;
Line 146: Line 146:
         &lt;td&gt;461.5385&lt;br /&gt;
         &lt;td&gt;461.5385&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;13/10&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;13/10, 21/16&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;E#/Fb&lt;br /&gt;
         &lt;td&gt;E#/Fb&lt;br /&gt;
Line 176: Line 176:
         &lt;td&gt;738.46&lt;br /&gt;
         &lt;td&gt;738.46&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;20/13&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;20/13, 32/21&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;G&lt;br /&gt;
         &lt;td&gt;G&lt;br /&gt;
Line 186: Line 186:
         &lt;td&gt;830.77&lt;br /&gt;
         &lt;td&gt;830.77&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;8/5, 13/8, 18/11&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;8/5, 13/8, 18/11, 21/13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;G#/Ab&lt;br /&gt;
         &lt;td&gt;G#/Ab&lt;br /&gt;
Line 196: Line 196:
         &lt;td&gt;923.08&lt;br /&gt;
         &lt;td&gt;923.08&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;22/13&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;22/13, 12/7&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;A&lt;br /&gt;
         &lt;td&gt;A&lt;br /&gt;
Line 216: Line 216:
         &lt;td&gt;1107.69&lt;br /&gt;
         &lt;td&gt;1107.69&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;25/13, 104/55&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;21/11, 25/13, 104/55&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;B/Cb&lt;br /&gt;
         &lt;td&gt;B/Cb&lt;br /&gt;
Line 233: Line 233:
&lt;/table&gt;
&lt;/table&gt;


*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.&lt;br /&gt;
*based on treating 13-EDO as a 2.5.9.11.13.21 subgroup temperament; other approaches are possible.&lt;br /&gt;
based on the 6L1s heptatonic scale; see below.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
F-&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Harmony in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Harmony in 13edo&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Harmony in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Harmony in 13edo&lt;/h1&gt;
  Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a &amp;quot;stack of 3rds&amp;quot; the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;2*13 subgroup&lt;/a&gt; 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.&lt;br /&gt;
  Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a &amp;quot;stack of 3rds&amp;quot; the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;2*13 subgroup&lt;/a&gt; 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.&lt;br /&gt;