13edo: Difference between revisions

Wikispaces>phylingual
**Imported revision 392043468 - Original comment: **
Wikispaces>guest
**Imported revision 403861816 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-12-13 13:27:19 UTC</tt>.<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2013-02-03 16:23:09 UTC</tt>.<br>
: The original revision id was <tt>392043468</tt>.<br>
: The original revision id was <tt>403861816</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 13: Line 13:
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. It is the sixth [[prime numbers|prime]] edo, following [[11edo]] and coming before [[17edo]]. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. It is the sixth [[prime numbers|prime]] edo, following [[11edo]] and coming before [[17edo]]. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo).
[[file:13edo-chromatic-scale.mid|13 edo chromatic ascending and descending scale on C]]
[[file:13edo-chromatic-scale.mid|13 edo chromatic ascending and descending scale on C]]
|| Degree || Cents ||= Approximate Ratios* || 6L1s Names || 5L3s Names || [[26edo]] names ||
|| __[[#|Degree]]__ || Cents ||= Approximate Ratios* || 6L1s Names || 5L3s Names || [[26edo]] names ||
|| 0 || 0 ||= 1/1 || C || C || C ||
|| 0 || 0 ||= 1/1 || C || C || C ||
|| 1 || 92.3077 ||= 22/21, 55/52, 117/110, 26/25 || C#/Db || C#/Db || Cx/Dbb ||
|| 1 || 92.3077 ||= 22/21, 55/52, 117/110, 26/25 || C#/Db || C#/Db || Cx/Dbb ||
Line 31: Line 31:


=Harmony in 13edo=  
=Harmony in 13edo=  
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a "stack of 3rds" the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the [[k*N subgroups|2*13 subgroup]] 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a "stack of 3rds" the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (__[[#|degrees]]__ 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the [[k*N subgroups|2*13 subgroup]] 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.


The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite close to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).
The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite __[[#|close]]__ to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).


=Scales in 13edo=  
=Scales in 13edo=  
Due to the prime character of the number 13, 13edo can form several xenharmonic [[MOSScales|moment of symmetry scales]]. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp; 6\13, respectively.
Due to the prime character of the number 13, 13edo can form several xenharmonic [[MOSScales|moment of symmetry scales]]. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two __[[#|degrees of]]__ 13edo), 3\13, 4\13, 5\13, &amp; 6\13, respectively.


[[image:13edo_horograms.jpg]]
[[image:13edo_horograms.jpg]]
Line 64: Line 64:
[[@http://www.elvenminstrel.com/music/tuning/equal/13equal/13tet.htm|Upsidedown and Backwards: Explorations in 13-tone Equal Temperament]] by [[http://www.elvenminstrel.com/|David J. Finnamore]]
[[@http://www.elvenminstrel.com/music/tuning/equal/13equal/13tet.htm|Upsidedown and Backwards: Explorations in 13-tone Equal Temperament]] by [[http://www.elvenminstrel.com/|David J. Finnamore]]
&lt;span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"&gt;[[http://micro.soonlabel.com/gene_ward_smith/Others/Winchester/11%20-%2011.%2013%20octave.mp3|Comets Over Flatland 11]]&lt;/span&gt; by [[Randy Winchester]]
&lt;span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"&gt;[[http://micro.soonlabel.com/gene_ward_smith/Others/Winchester/11%20-%2011.%2013%20octave.mp3|Comets Over Flatland 11]]&lt;/span&gt; by [[Randy Winchester]]
[[http://archive.org/details/ineedSynthetiklove|(iNeed) SyNthetikLove]] by Jon Lyle Smith
&lt;span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"&gt;[[http://micro.soonlabel.com/13edo/20120225-midiaxe-prelude-for-synthesizer-in-13-equal.mp3|Prelude for Synthesizer in 13 Equal]]&lt;/span&gt; by [[Chris Vaisvil]]
&lt;span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"&gt;[[http://micro.soonlabel.com/13edo/20120225-midiaxe-prelude-for-synthesizer-in-13-equal.mp3|Prelude for Synthesizer in 13 Equal]]&lt;/span&gt; by [[Chris Vaisvil]]
&lt;span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"&gt;[[http://micro.soonlabel.com/13edo/muon_catalyzed_fusion_13_edo.mp3|Muon Catalyzed Fusion]]&lt;/span&gt; by [[Chris Vaisvil]]
&lt;span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"&gt;[[http://micro.soonlabel.com/13edo/muon_catalyzed_fusion_13_edo.mp3|Muon Catalyzed Fusion]]&lt;/span&gt; by [[Chris Vaisvil]]
Line 129: Line 130:
&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;Degree&lt;br /&gt;
         &lt;td&gt;&lt;u&gt;[[#|Degree]]&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Cents&lt;br /&gt;
         &lt;td&gt;Cents&lt;br /&gt;
Line 343: Line 344:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:3:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Harmony in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:3 --&gt;Harmony in 13edo&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:3:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Harmony in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:3 --&gt;Harmony in 13edo&lt;/h1&gt;
  Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a &amp;quot;stack of 3rds&amp;quot; the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (degrees 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;2*13 subgroup&lt;/a&gt; 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.&lt;br /&gt;
  Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings). Trying to approximate the usual major and minor triads of 12-EDO within 13-EDO is usually a disappointment if consonance is the goal; 0-3-7, 0-4-7, 0-3-8, and 0-4-8 are all rather rough in 13-EDO. Typically, the most consonant harmonies do not use a &amp;quot;stack of 3rds&amp;quot; the way they do in 12-TET, since the strongest dissonances in 13-EDO are near the middle of the octave (&lt;u&gt;[[#|degrees]]&lt;/u&gt; 6, 7, and 8). Instead, a stack of whole-tones, or a mixture of whole-tones and minor 3rds, often yields good results. For example, one way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. It actually performs quite admirably in this regard, and a chord of 0-4-15-19-22 (approximating 4:5:9:11:13) sounds very convincing. An even larger subgroup is the &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;2*13 subgroup&lt;/a&gt; 2.9.5.21.11.13, on which 13 has the same tuning and commas as 26et.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite close to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).&lt;br /&gt;
The 2.9.5.11.13 subgroup has commas 45/44, 65/64 and 81/80, leading to a linear temperament with POTE generator 185.728 cents, quite &lt;u&gt;[[#|close]]&lt;/u&gt; to 2\13. Use this as a generator, and at 7 notes (6L1s) two full pentads are available (as well as two more 4:5:9:11 tetrad, and one 4:5:9:13 tetrad).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Scales in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt;Scales in 13edo&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Scales in 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt;Scales in 13edo&lt;/h1&gt;
  Due to the prime character of the number 13, 13edo can form several xenharmonic &lt;a class="wiki_link" href="/MOSScales"&gt;moment of symmetry scales&lt;/a&gt;. The diagram below shows five &amp;quot;families&amp;quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp;amp; 6\13, respectively.&lt;br /&gt;
  Due to the prime character of the number 13, 13edo can form several xenharmonic &lt;a class="wiki_link" href="/MOSScales"&gt;moment of symmetry scales&lt;/a&gt;. The diagram below shows five &amp;quot;families&amp;quot; of MOS scales: those generated by making a chain of 2\13 (two &lt;u&gt;[[#|degrees of]]&lt;/u&gt; 13edo), 3\13, 4\13, 5\13, &amp;amp; 6\13, respectively.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:774:&amp;lt;img src=&amp;quot;/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:774 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:774:&amp;lt;img src=&amp;quot;/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:774 --&gt;&lt;br /&gt;
Line 376: Line 377:
&lt;a class="wiki_link_ext" href="http://www.elvenminstrel.com/music/tuning/equal/13equal/13tet.htm" rel="nofollow" target="_blank"&gt;Upsidedown and Backwards: Explorations in 13-tone Equal Temperament&lt;/a&gt; by &lt;a class="wiki_link_ext" href="http://www.elvenminstrel.com/" rel="nofollow"&gt;David J. Finnamore&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.elvenminstrel.com/music/tuning/equal/13equal/13tet.htm" rel="nofollow" target="_blank"&gt;Upsidedown and Backwards: Explorations in 13-tone Equal Temperament&lt;/a&gt; by &lt;a class="wiki_link_ext" href="http://www.elvenminstrel.com/" rel="nofollow"&gt;David J. Finnamore&lt;/a&gt;&lt;br /&gt;
&lt;span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"&gt;&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Winchester/11%20-%2011.%2013%20octave.mp3" rel="nofollow"&gt;Comets Over Flatland 11&lt;/a&gt;&lt;/span&gt; by &lt;a class="wiki_link" href="/Randy%20Winchester"&gt;Randy Winchester&lt;/a&gt;&lt;br /&gt;
&lt;span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"&gt;&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Winchester/11%20-%2011.%2013%20octave.mp3" rel="nofollow"&gt;Comets Over Flatland 11&lt;/a&gt;&lt;/span&gt; by &lt;a class="wiki_link" href="/Randy%20Winchester"&gt;Randy Winchester&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://archive.org/details/ineedSynthetiklove" rel="nofollow"&gt;(iNeed) SyNthetikLove&lt;/a&gt; by Jon Lyle Smith&lt;br /&gt;
&lt;span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"&gt;&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/13edo/20120225-midiaxe-prelude-for-synthesizer-in-13-equal.mp3" rel="nofollow"&gt;Prelude for Synthesizer in 13 Equal&lt;/a&gt;&lt;/span&gt; by &lt;a class="wiki_link" href="/Chris%20Vaisvil"&gt;Chris Vaisvil&lt;/a&gt;&lt;br /&gt;
&lt;span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"&gt;&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/13edo/20120225-midiaxe-prelude-for-synthesizer-in-13-equal.mp3" rel="nofollow"&gt;Prelude for Synthesizer in 13 Equal&lt;/a&gt;&lt;/span&gt; by &lt;a class="wiki_link" href="/Chris%20Vaisvil"&gt;Chris Vaisvil&lt;/a&gt;&lt;br /&gt;
&lt;span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"&gt;&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/13edo/muon_catalyzed_fusion_13_edo.mp3" rel="nofollow"&gt;Muon Catalyzed Fusion&lt;/a&gt;&lt;/span&gt; by &lt;a class="wiki_link" href="/Chris%20Vaisvil"&gt;Chris Vaisvil&lt;/a&gt;&lt;br /&gt;
&lt;span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"&gt;&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/13edo/muon_catalyzed_fusion_13_edo.mp3" rel="nofollow"&gt;Muon Catalyzed Fusion&lt;/a&gt;&lt;/span&gt; by &lt;a class="wiki_link" href="/Chris%20Vaisvil"&gt;Chris Vaisvil&lt;/a&gt;&lt;br /&gt;