13edo: Difference between revisions

Wikispaces>JosephRuhf
**Imported revision 601321348 - Original comment: **
Wikispaces>TallKite
**Imported revision 602738262 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-12-04 06:53:53 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-12-22 04:01:49 UTC</tt>.<br>
: The original revision id was <tt>601321348</tt>.<br>
: The original revision id was <tt>602738262</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 18: Line 18:
As a temperament of 21-odd-limit Just Intonation, 13edo has excellent approximations to the 11th and 21st harmonics, and reasonable approximations to the 5th, 9th, 13th, 17th, and 19th harmonics. For most purposes it does not offer acceptable approximations to the 3rd, 7th, or 15th. The lack of reasonable approximation to the 3rd harmonic makes 13edo unsuitable for common-practice music, but its good approximations to ratios of 11, 13, and 21 make it a very xenharmonic tuning, as these identities are not remotely represented in 12edo. Despite its reputation for dissonance, it is an excellent rank-1 temperament on the 2.5.9.11.13.17.19.21 subgroup, and has a substantial repertoire of complex consonances for its small size.
As a temperament of 21-odd-limit Just Intonation, 13edo has excellent approximations to the 11th and 21st harmonics, and reasonable approximations to the 5th, 9th, 13th, 17th, and 19th harmonics. For most purposes it does not offer acceptable approximations to the 3rd, 7th, or 15th. The lack of reasonable approximation to the 3rd harmonic makes 13edo unsuitable for common-practice music, but its good approximations to ratios of 11, 13, and 21 make it a very xenharmonic tuning, as these identities are not remotely represented in 12edo. Despite its reputation for dissonance, it is an excellent rank-1 temperament on the 2.5.9.11.13.17.19.21 subgroup, and has a substantial repertoire of complex consonances for its small size.


|| **Degree** || Cents (coarse/fine)
|| **Degree** || Cents ||= Approximated 21-limit Ratios* || Erv Wilson || Archaeotonic || Oneirotonic || [[26edo]] names || Kentaku ||
&lt;span style="background-color: #ffffff;"&gt;DMS&lt;/span&gt; ||= Approximated 21-limit Ratios* || Erv Wilson || Archaeotonic || Oneirotonic || [[26edo]] names || Kentaku ||
|| 0 || 0 ||= 1/1 || H || C || C || C || J ||
|| 0 || 0 ||= 1/1 || H || C || C || C || J ||
|| 1 || 92.31, 110.77
|| 1 || 92.31 ||= 17/16, 18/17, 19/18, 20/19, 21/20, 22/21 || &lt;span style="background-color: #ffffff; color: #333333; font-family: Verdana; font-size: 12px;"&gt;β&lt;/span&gt; || C#/Db || C#/Db || Cx/Dbb || J#/Kb ||
27º41'32" ||= 17/16, 18/17, 19/18, 20/19, 21/20, 22/21 || &lt;span style="background-color: #ffffff; color: #333333; font-family: Verdana; font-size: 12px;"&gt;β&lt;/span&gt; || C#/Db || C#/Db || Cx/Dbb || J#/Kb ||
|| 2 || 184.615 ||= 9/8, 10/9, 11/10, 19/17, 21/19 || A || D || D || D || K ||
|| 2 || 184.615, 221.54
|| 3 || 276.92 ||= 7/6, 13/11, 20/17, 19/16, 22/19 || &lt;span style="background-color: #ffffff; color: #333333; font-family: Verdana; font-size: 12px;"&gt;δ&lt;/span&gt; || D#/Eb || D#/Eb || Dx/Ebb || K#/Lb ||
55°22'5" ||= 9/8, 10/9, 11/10, 19/17, 21/19 || A || D || D || D || K ||
|| 4 || 369.23 ||= 5/4, 11/9, 16/13, 26/21 || C || E || E || E || L ||
|| 3 || 276.92, 332.31
|| 5 || 461.54 ||= 13/10, 17/13, 21/16, 22/17 || B || E#/Fb || F || Ex/Fb || M ||
83°4'37" ||= 7/6, 13/11, 20/17, 19/16, 22/19 || &lt;span style="background-color: #ffffff; color: #333333; font-family: Verdana; font-size: 12px;"&gt;δ&lt;/span&gt; || D#/Eb || D#/Eb || Dx/Ebb || K#/Lb ||
|| 6 || 553.85 ||= 11/8, 18/13, 26/19 || &lt;span style="background-color: #ffffff; color: #333333; font-family: Verdana; font-size: 12px;"&gt;ε&lt;/span&gt; || F || F#/Gb || F# || M#/Nb ||
|| 4 || 369.23, 443.08
|| 7 || 646.15 ||= 16/11, 13/9, 19/13 || D || F#/Gb || G || Gb || N ||
110°46'9" ||= 5/4, 11/9, 16/13, 26/21 || C || E || E || E || L ||
|| 8 || 738.46 ||= 17/11, 20/13, 26/17, 32/21 || &lt;span style="background-color: #ffffff; color: #333333; font-family: Verdana; font-size: 12px;"&gt;γ&lt;/span&gt; || G || G#/Hb || G# || N#/Ob ||
|| 5 || 461.54, 553.85
|| 9 || 830.77 ||= 8/5, 13/8, 18/11, 21/13 || F || G#/Ab || H || Ab || O ||
138°27'42" ||= 13/10, 17/13, 21/16, 22/17 || B || E#/Fb || F || Ex/Fb || M ||
|| 10 || 923.08 ||= [[17_10|17/10]], [[12_7|12/7]], [[22_13|22/13]], [[19_11|19/11]] || E || A || A || A# || P ||
|| 6 || 553.85, 664.615
|| 11 || 1015.385 ||= 9/5, 16/9, 20/11, 34/19, 38/21 || &lt;span style="background-color: #ffffff; color: #333333; font-family: Verdana; font-size: 12px;"&gt;α&lt;/span&gt; || A#/Bb || A#/Bb || Bb || P#/Qb ||
166°9'14" ||= 11/8, 18/13, 26/19 || &lt;span style="background-color: #ffffff; color: #333333; font-family: Verdana; font-size: 12px;"&gt;ε&lt;/span&gt; || F || F#/Gb || F# || M#/Nb ||
|| 12 || 1107.69 ||= 17/9, 19/10, 21/11, 32/17, 36/19, 40/21 || G || B/Cb || B || B#/Cbb || Q ||
|| 7 || 646.15, 775.385
|| 13 || 1200 ||= 2/1 || H || C/B# || C || C || J ||
193°50'46" ||= 16/11, 13/9, 19/13 || D || F#/Gb || G || Gb || N ||
|| 8 || 738.46, 886.15
221°32'18" ||= 17/11, 20/13, 26/17, 32/21 || &lt;span style="background-color: #ffffff; color: #333333; font-family: Verdana; font-size: 12px;"&gt;γ&lt;/span&gt; || G || G#/Hb || G# || N#/Ob ||
|| 9 || 830.77, 996.92
249°13'51" ||= 8/5, 13/8, 18/11, 21/13 || F || G#/Ab || H || Ab || O ||
|| 10 || 923.08, 1107.69
276°55'37" ||= [[17_10|17/10]], [[12_7|12/7]], [[22_13|22/13]], [[19_11|19/11]] || E || A || A || A# || P ||
|| 11 || 1015.385, 1218.46
304°37'55" ||= 9/5, 16/9, 20/11, 34/19, 38/21 || &lt;span style="background-color: #ffffff; color: #333333; font-family: Verdana; font-size: 12px;"&gt;α&lt;/span&gt; || A#/Bb || A#/Bb || Bb || P#/Qb ||
|| 12 || 1107.69, 1329.23
332°18'28" ||= 17/9, 19/10, 21/11, 32/17, 36/19, 40/21 || G || B/Cb || B || B#/Cbb || Q ||
|| 13 || 1200, 1440
360° ||= 2/1 || H || C/B# || C || C || J ||
*based on treating 13-EDO as a 2.5.9.11.13.21 subgroup temperament; other approaches are possible.
*based on treating 13-EDO as a 2.5.9.11.13.21 subgroup temperament; other approaches are possible.


Line 206: Line 192:
         &lt;td&gt;&lt;strong&gt;Degree&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;Degree&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Cents (coarse/fine)&lt;br /&gt;
         &lt;td&gt;Cents&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;DMS&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;Approximated 21-limit Ratios*&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Approximated 21-limit Ratios*&lt;br /&gt;
Line 243: Line 228:
         &lt;td&gt;1&lt;br /&gt;
         &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;92.31, 110.77&lt;br /&gt;
         &lt;td&gt;92.31&lt;br /&gt;
27º41'32&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;17/16, 18/17, 19/18, 20/19, 21/20, 22/21&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;17/16, 18/17, 19/18, 20/19, 21/20, 22/21&lt;br /&gt;
Line 262: Line 246:
         &lt;td&gt;2&lt;br /&gt;
         &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;184.615, 221.54&lt;br /&gt;
         &lt;td&gt;184.615&lt;br /&gt;
55°22'5&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;9/8, 10/9, 11/10, 19/17, 21/19&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;9/8, 10/9, 11/10, 19/17, 21/19&lt;br /&gt;
Line 281: Line 264:
         &lt;td&gt;3&lt;br /&gt;
         &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;276.92, 332.31&lt;br /&gt;
         &lt;td&gt;276.92&lt;br /&gt;
83°4'37&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;7/6, 13/11, 20/17, 19/16, 22/19&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;7/6, 13/11, 20/17, 19/16, 22/19&lt;br /&gt;
Line 300: Line 282:
         &lt;td&gt;4&lt;br /&gt;
         &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;369.23, 443.08&lt;br /&gt;
         &lt;td&gt;369.23&lt;br /&gt;
110°46'9&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;5/4, 11/9, 16/13, 26/21&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;5/4, 11/9, 16/13, 26/21&lt;br /&gt;
Line 319: Line 300:
         &lt;td&gt;5&lt;br /&gt;
         &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;461.54, 553.85&lt;br /&gt;
         &lt;td&gt;461.54&lt;br /&gt;
138°27'42&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;13/10, 17/13, 21/16, 22/17&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;13/10, 17/13, 21/16, 22/17&lt;br /&gt;
Line 338: Line 318:
         &lt;td&gt;6&lt;br /&gt;
         &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;553.85, 664.615&lt;br /&gt;
         &lt;td&gt;553.85&lt;br /&gt;
166°9'14&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;11/8, 18/13, 26/19&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;11/8, 18/13, 26/19&lt;br /&gt;
Line 357: Line 336:
         &lt;td&gt;7&lt;br /&gt;
         &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;646.15, 775.385&lt;br /&gt;
         &lt;td&gt;646.15&lt;br /&gt;
193°50'46&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;16/11, 13/9, 19/13&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;16/11, 13/9, 19/13&lt;br /&gt;
Line 376: Line 354:
         &lt;td&gt;8&lt;br /&gt;
         &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;738.46, 886.15&lt;br /&gt;
         &lt;td&gt;738.46&lt;br /&gt;
221°32'18&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;17/11, 20/13, 26/17, 32/21&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;17/11, 20/13, 26/17, 32/21&lt;br /&gt;
Line 395: Line 372:
         &lt;td&gt;9&lt;br /&gt;
         &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;830.77, 996.92&lt;br /&gt;
         &lt;td&gt;830.77&lt;br /&gt;
249°13'51&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;8/5, 13/8, 18/11, 21/13&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;8/5, 13/8, 18/11, 21/13&lt;br /&gt;
Line 414: Line 390:
         &lt;td&gt;10&lt;br /&gt;
         &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;923.08, 1107.69&lt;br /&gt;
         &lt;td&gt;923.08&lt;br /&gt;
276°55'37&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/17_10"&gt;17/10&lt;/a&gt;, &lt;a class="wiki_link" href="/12_7"&gt;12/7&lt;/a&gt;, &lt;a class="wiki_link" href="/22_13"&gt;22/13&lt;/a&gt;, &lt;a class="wiki_link" href="/19_11"&gt;19/11&lt;/a&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;a class="wiki_link" href="/17_10"&gt;17/10&lt;/a&gt;, &lt;a class="wiki_link" href="/12_7"&gt;12/7&lt;/a&gt;, &lt;a class="wiki_link" href="/22_13"&gt;22/13&lt;/a&gt;, &lt;a class="wiki_link" href="/19_11"&gt;19/11&lt;/a&gt;&lt;br /&gt;
Line 433: Line 408:
         &lt;td&gt;11&lt;br /&gt;
         &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1015.385, 1218.46&lt;br /&gt;
         &lt;td&gt;1015.385&lt;br /&gt;
304°37'55&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;9/5, 16/9, 20/11, 34/19, 38/21&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;9/5, 16/9, 20/11, 34/19, 38/21&lt;br /&gt;
Line 452: Line 426:
         &lt;td&gt;12&lt;br /&gt;
         &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1107.69, 1329.23&lt;br /&gt;
         &lt;td&gt;1107.69&lt;br /&gt;
332°18'28&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;17/9, 19/10, 21/11, 32/17, 36/19, 40/21&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;17/9, 19/10, 21/11, 32/17, 36/19, 40/21&lt;br /&gt;
Line 471: Line 444:
         &lt;td&gt;13&lt;br /&gt;
         &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1200, 1440&lt;br /&gt;
         &lt;td&gt;1200&lt;br /&gt;
360°&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;2/1&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;2/1&lt;br /&gt;