Würschmidt family: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 328082566 - Original comment: **
Wikispaces>hstraub
**Imported revision 445082380 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-05-01 14:15:48 UTC</tt>.<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2013-08-16 06:04:46 UTC</tt>.<br>
: The original revision id was <tt>328082566</tt>.<br>
: The original revision id was <tt>445082380</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]]
&lt;span style="display: block; text-align: right;"&gt;Other languages: [[xenharmonie/Würschmidt|Deutsch]]
&lt;/span&gt;
=Würschmidt=  
=Würschmidt=  
The [[xenharmonic/5-limit|5-limit]] parent comma for the würschmidt family is 393216/390625, known as Würschmidt's comma, and named after José Würschmidt, Its [[xenharmonic/monzo|monzo]] is |17 1 -8&gt;, and flipping that yields &lt;&lt;8 1 17|| for the wedgie. This tells us the [[xenharmonic/generator|generator]] is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the [[xenharmonic/minimax tuning|minimax tuning]]. Würschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note [[xenharmonic/MOS|MOS]] all possibilities.
The [[xenharmonic/5-limit|5-limit]] parent comma for the würschmidt family is 393216/390625, known as Würschmidt's comma, and named after José Würschmidt, Its [[xenharmonic/monzo|monzo]] is |17 1 -8&gt;, and flipping that yields &lt;&lt;8 1 17|| for the wedgie. This tells us the [[xenharmonic/generator|generator]] is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the [[xenharmonic/minimax tuning|minimax tuning]]. Würschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note [[xenharmonic/MOS|MOS]] all possibilities.
Line 39: Line 41:
Badness: 0.0244
Badness: 0.0244


==13-limit==
==13-limit==  
Commas: 99/98, 144/143, 176/175, 275/273
Commas: 99/98, 144/143, 176/175, 275/273


Line 48: Line 50:
Badness: 0.0236
Badness: 0.0236


==Worseschmidt==
==Worseschmidt==  
Commas: 66/65, 99/98, 105/104, 243/242
Commas: 66/65, 99/98, 105/104, 243/242


Line 109: Line 111:
Badness: 0.0211
Badness: 0.0211


===13-limit===
===13-limit===  
Commas: 243/242 351/350 441/440 3584/3575
Commas: 243/242 351/350 441/440 3584/3575


Line 118: Line 120:
Badness: 0.0231
Badness: 0.0231


===Hemithir===
===Hemithir===  
Commas: 121/120 176/175 196/195 275/273
Commas: 121/120 176/175 196/195 275/273


Line 127: Line 129:
Badness: 0.0312
Badness: 0.0312


==Hemiwur==
==Hemiwur==  
Commas: 121/120, 176/175, 1375/1372
Commas: 121/120, 176/175, 1375/1372


Line 136: Line 138:
Badness: 0.0293
Badness: 0.0293


===13-limit===
===13-limit===  
Commas: 121/120, 176/175, 196/195, 275/273
Commas: 121/120, 176/175, 196/195, 275/273


Line 145: Line 147:
Badness: 0.0284
Badness: 0.0284


===Hemiwar===
===Hemiwar===  
Commas: 66/65, 105/104, 121/120, 1375/1372
Commas: 66/65, 105/104, 121/120, 1375/1372


Line 154: Line 156:
Badness: 0.0449
Badness: 0.0449


=Relationships to other temperaments=
=Relationships to other temperaments=  
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;"&gt;around 775.489 which is approximately&lt;/span&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;"&gt;around 775.489 which is approximately&lt;/span&gt;
2-Würschmidt, the temperament with all the same commas as Würschmidt but a generator of twice the size, is equivalent to [[xenharmonic/skwares|skwares]] as a 2.3.7.11 temperament.</pre></div>
2-Würschmidt, the temperament with all the same commas as Würschmidt but a generator of twice the size, is equivalent to [[xenharmonic/skwares|skwares]] as a 2.3.7.11 temperament.</pre></div>
Line 176: Line 178:
&lt;!-- ws:end:WikiTextTocRule:50 --&gt;&lt;!-- ws:start:WikiTextTocRule:51: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Relationships to other temperaments"&gt;Relationships to other temperaments&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:50 --&gt;&lt;!-- ws:start:WikiTextTocRule:51: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Relationships to other temperaments"&gt;Relationships to other temperaments&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:51 --&gt;&lt;!-- ws:start:WikiTextTocRule:52: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:51 --&gt;&lt;!-- ws:start:WikiTextTocRule:52: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:52 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Würschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Würschmidt&lt;/h1&gt;
&lt;!-- ws:end:WikiTextTocRule:52 --&gt;&lt;span style="display: block; text-align: right;"&gt;Other languages: &lt;a class="wiki_link" href="http://xenharmonie.wikispaces.com/W%C3%BCrschmidt"&gt;Deutsch&lt;/a&gt;&lt;br /&gt;
&lt;/span&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Würschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Würschmidt&lt;/h1&gt;
  The &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/5-limit"&gt;5-limit&lt;/a&gt; parent comma for the würschmidt family is 393216/390625, known as Würschmidt's comma, and named after José Würschmidt, Its &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/monzo"&gt;monzo&lt;/a&gt; is |17 1 -8&amp;gt;, and flipping that yields &amp;lt;&amp;lt;8 1 17|| for the wedgie. This tells us the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/generator"&gt;generator&lt;/a&gt; is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/minimax%20tuning"&gt;minimax tuning&lt;/a&gt;. Würschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS"&gt;MOS&lt;/a&gt; all possibilities.&lt;br /&gt;
  The &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/5-limit"&gt;5-limit&lt;/a&gt; parent comma for the würschmidt family is 393216/390625, known as Würschmidt's comma, and named after José Würschmidt, Its &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/monzo"&gt;monzo&lt;/a&gt; is |17 1 -8&amp;gt;, and flipping that yields &amp;lt;&amp;lt;8 1 17|| for the wedgie. This tells us the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/generator"&gt;generator&lt;/a&gt; is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/minimax%20tuning"&gt;minimax tuning&lt;/a&gt;. Würschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS"&gt;MOS&lt;/a&gt; all possibilities.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 209: Line 213:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Würschmidt-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;13-limit&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Würschmidt-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;13-limit&lt;/h2&gt;
Commas: 99/98, 144/143, 176/175, 275/273&lt;br /&gt;
Commas: 99/98, 144/143, 176/175, 275/273&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~5/4 = 387.626&lt;br /&gt;
POTE generator: ~5/4 = 387.626&lt;br /&gt;
Line 218: Line 222:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Würschmidt-Worseschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Worseschmidt&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Würschmidt-Worseschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Worseschmidt&lt;/h2&gt;
Commas: 66/65, 99/98, 105/104, 243/242&lt;br /&gt;
Commas: 66/65, 99/98, 105/104, 243/242&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~5/4 = 387.099&lt;br /&gt;
POTE generator: ~5/4 = 387.099&lt;br /&gt;
Line 279: Line 283:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc11"&gt;&lt;a name="Hemiwürschmidt-11-limit-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;13-limit&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc11"&gt;&lt;a name="Hemiwürschmidt-11-limit-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;13-limit&lt;/h3&gt;
Commas: 243/242 351/350 441/440 3584/3575&lt;br /&gt;
Commas: 243/242 351/350 441/440 3584/3575&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~28/25 = 193.840&lt;br /&gt;
POTE generator: ~28/25 = 193.840&lt;br /&gt;
Line 288: Line 292:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc12"&gt;&lt;a name="Hemiwürschmidt-11-limit-Hemithir"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;Hemithir&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc12"&gt;&lt;a name="Hemiwürschmidt-11-limit-Hemithir"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;Hemithir&lt;/h3&gt;
Commas: 121/120 176/175 196/195 275/273&lt;br /&gt;
Commas: 121/120 176/175 196/195 275/273&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~28/25 = 193.918&lt;br /&gt;
POTE generator: ~28/25 = 193.918&lt;br /&gt;
Line 297: Line 301:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc13"&gt;&lt;a name="Hemiwürschmidt-Hemiwur"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;Hemiwur&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc13"&gt;&lt;a name="Hemiwürschmidt-Hemiwur"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;Hemiwur&lt;/h2&gt;
Commas: 121/120, 176/175, 1375/1372&lt;br /&gt;
Commas: 121/120, 176/175, 1375/1372&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~28/25 = 193.884&lt;br /&gt;
POTE generator: ~28/25 = 193.884&lt;br /&gt;
Line 306: Line 310:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:28:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc14"&gt;&lt;a name="Hemiwürschmidt-Hemiwur-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:28 --&gt;13-limit&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:28:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc14"&gt;&lt;a name="Hemiwürschmidt-Hemiwur-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:28 --&gt;13-limit&lt;/h3&gt;
Commas: 121/120, 176/175, 196/195, 275/273&lt;br /&gt;
Commas: 121/120, 176/175, 196/195, 275/273&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~28/25 = 194.004&lt;br /&gt;
POTE generator: ~28/25 = 194.004&lt;br /&gt;
Line 315: Line 319:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:30:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc15"&gt;&lt;a name="Hemiwürschmidt-Hemiwur-Hemiwar"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:30 --&gt;Hemiwar&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:30:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc15"&gt;&lt;a name="Hemiwürschmidt-Hemiwur-Hemiwar"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:30 --&gt;Hemiwar&lt;/h3&gt;
Commas: 66/65, 105/104, 121/120, 1375/1372&lt;br /&gt;
Commas: 66/65, 105/104, 121/120, 1375/1372&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~28/25 = 193.698&lt;br /&gt;
POTE generator: ~28/25 = 193.698&lt;br /&gt;
Line 324: Line 328:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:32:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc16"&gt;&lt;a name="Relationships to other temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:32 --&gt;Relationships to other temperaments&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:32:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc16"&gt;&lt;a name="Relationships to other temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:32 --&gt;Relationships to other temperaments&lt;/h1&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;"&gt;around 775.489 which is approximately&lt;/span&gt;&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;"&gt;around 775.489 which is approximately&lt;/span&gt;&lt;br /&gt;
2-Würschmidt, the temperament with all the same commas as Würschmidt but a generator of twice the size, is equivalent to &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/skwares"&gt;skwares&lt;/a&gt; as a 2.3.7.11 temperament.&lt;/body&gt;&lt;/html&gt;</pre></div>
2-Würschmidt, the temperament with all the same commas as Würschmidt but a generator of twice the size, is equivalent to &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/skwares"&gt;skwares&lt;/a&gt; as a 2.3.7.11 temperament.&lt;/body&gt;&lt;/html&gt;</pre></div>