Kite's ups and downs notation: Difference between revisions

Wikispaces>TallKite
**Imported revision 594425770 - Original comment: **
Wikispaces>TallKite
**Imported revision 594433312 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-10-06 01:57:13 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-10-06 04:59:44 UTC</tt>.<br>
: The original revision id was <tt>594425770</tt>.<br>
: The original revision id was <tt>594433312</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 873: Line 873:
Another is to switch from heptatonic notation to some other type. Pentatonic notation is a natural fit, in the sense that no ups or downs are needed, for 8edo, 13edo and 18edo, but not 11edo.
Another is to switch from heptatonic notation to some other type. Pentatonic notation is a natural fit, in the sense that no ups or downs are needed, for 8edo, 13edo and 18edo, but not 11edo.


The third approach is to use some interval other than the fifth to generate the notation. Earlier I said notating 22edo using an even distribution of note names such as C _ _ D _ _ E _ _ F _ _ _ G _ _ A _ _ B _ _ C was a bad idea because the G-D and the A-E fifths looked perfect but were actually diminished. The reasoning is that 3/2 is an important ratio, and any decent approximation of 3/2 should look like a perfect fifth. But these EDOs don't approximate 3/2 well, so they can be thought of as having both a major fifth and a minor fifth. This negates any expectations of what a fifth should look like.
The third approach is to use an alternate generator, see the next chapter.


__**Pentatonic notation for 8edo, 11b-edo, 13edo and 18edo**__
__**Pentatonic notation for 8edo, 11b-edo, 13edo and 18edo**__
Line 933: Line 933:




__**Alternate generators for 8edo, 11edo, 13edo and 18edo**__
=__Alternate Generators__=
 
Ups and downs can be avoided entirely by using some interval other than the fifth to generate the notation. Earlier I said notating 22edo using an even distribution of note names such as C _ _ D _ _ E _ _ F _ _ _ G _ _ A _ _ B _ _ C was a bad idea because the G-D and the A-E fifths looked perfect but were actually diminished. The reasoning is that 3/2 is an important ratio, and any decent approximation of 3/2 should look like a perfect fifth. But EDOs like 8, 11, 13 and 18 don't approximate 3/2 well, so they can be thought of as having both a major fifth and a minor fifth. This negates any expectations of what a fifth should look like.
 
Every EDO has a "natural" heptatonic generator. For 13-edo, it's a 2\13 2nd (and its octave inverse of course), because seven 2\13's falls only one EDOstep away from the octave. Thus the sharp means "sharpened by one EDO-step", and ups and downs aren't needed. The generator is always perfect, so there's a perfect 2nd, a major &amp; minor 3rd, 4th, 5th and 6th, and a perfect 7th.
 
__**Natural generators for 8edo, 11edo, 13edo and 18edo**__


**__8edo__:** (generator = 1\8 = perfect 2nd = 150¢)
**__8edo__:** (generator = 1\8 = perfect 2nd = 150¢)
Line 946: Line 952:
D - D#/Eb - E - F - F#/Gb - G - A - A#/Bb - B - C - C#/Db - D
D - D#/Eb - E - F - F#/Gb - G - A - A#/Bb - B - C - C#/Db - D
P1 - m2 - M2 - P3 - m4 - M4 - m5 - M5 - P6 - m7 - M7 - P8
P1 - m2 - M2 - P3 - m4 - M4 - m5 - M5 - P6 - m7 - M7 - P8
sixthwards chain of thirds: M5 - M7 - M2 - M4 - P6 - P1 - P3 - m5 - m7 - m2 - m4 - d6 etc.
chain of thirds: M5 - M7 - M2 - M4 - P6 - P1 - P3 - m5 - m7 - m2 - m4 - d6 etc.
E# - G# - B# - D# - F# - A# - C# - E - G - B - D - F - A - C - Eb - Gb - Bb - Db - Fb - Ab - Cb
E# - G# - B# - D# - F# - A# - C# - E - G - B - D - F - A - C - Eb - Gb - Bb - Db - Fb - Ab - Cb


Line 953: Line 959:
D - D#/Eb - E - E#/Fb - F - F#/Gb - G - A - A#/Bb - B - B#/Cb - C - C#/Db - D
D - D#/Eb - E - E#/Fb - F - F#/Gb - G - A - A#/Bb - B - B#/Cb - C - C#/Db - D
P1 - A1/d2 - P2 - m3 - M3 - m4 - M4 - m5 - M5 - m6 - M6 - P7 - A7/d8 - P8
P1 - A1/d2 - P2 - m3 - M3 - m4 - M4 - m5 - M5 - m6 - M6 - P7 - A7/d8 - P8
secondwards chain of seconds: m3 - m4 - m5 - m6 - P7 - P1 - P2 - M3 - M4 - M5 - M6 - A7 etc.
chain of seconds: m3 - m4 - m5 - m6 - P7 - P1 - P2 - M3 - M4 - M5 - M6 - A7 etc.
Ab - Bb - Cb - Db - Eb - Fb - Gb - A - B - C - D - E - F - G - A# - B# - C# - D# - E# - F# - G#
Ab - Bb - Cb - Db - Eb - Fb - Gb - A - B - C - D - E - F - G - A# - B# - C# - D# - E# - F# - G#


Line 960: Line 966:
D - D# - Eb - E - E#/Fb - F - F# - Gb - G - G#/Ab - A - A# - Bb - B - B#/Cb - C - C# - Db - D
D - D# - Eb - E - E#/Fb - F - F# - Gb - G - G#/Ab - A - A# - Bb - B - B#/Cb - C - C# - Db - D
P1 - A1/d2 - m2 - M2 - A2/d3 - P3 - A3/d4 - m4 - M4 - A4/d5 - m5 - M5 - A5/d6 - P6 - A6/d7 - m7 - M7 - A7/d8 - P8
P1 - A1/d2 - m2 - M2 - A2/d3 - P3 - A3/d4 - m4 - M4 - A4/d5 - m5 - M5 - A5/d6 - P6 - A6/d7 - m7 - M7 - A7/d8 - P8
sixthwards chain of thirds: M5 - M7 - M2 - M4 - P6 - P1 - P3 - m5 - m7 - m2 - m4 - d6 etc.
chain of thirds: M5 - M7 - M2 - M4 - P6 - P1 - P3 - m5 - m7 - m2 - m4 - d6 etc.
E# - G# - B# - D# - F# - A# - C# - E - G - B - D - F - A - C - Eb - Gb - Bb - Db - Fb - Ab - Cb
E# - G# - B# - D# - F# - A# - C# - E - G - B - D - F - A - C - Eb - Gb - Bb - Db - Fb - Ab - Cb


Natural generators can be used for other EDOs as well. For all EDOs with chroma 1, -1 or 0, the natural generator is the fifth, and there is no good alternative. For all chroma-2 and chroma-5 edos, the natural generator is a 3rd. For chroma-3 and chroma-4, it's a 2nd.
For 22-edo, it's a 3\22 2nd
genchain: ...D# E# F# G# A B C D E F G Ab Bb Cb Db...
scale: D * * E * * F * * G * * * A * * B * * C * * D
For 17-edo, the natural generator is the 5\17 3rd.
For 15-edo, it's the 2\15 2nd.
For 12-edo, it's the 7\12 5th, which generates standard notation.
For 16-edo, it's the 9\16 5th.
For 21-edo, it's the 3\21 2nd, the 6\21 3rd, the 9\21 4th, the 12\21 5th, etc. All these intervals generate the same scale, and the same notation.
You can easily find the natural generator using the scale tree. It's also related to the chroma. But it doesn't intrinsically depend on any ratios or commas, or on the prime limit.


=__Ups and downs solfege__=  
=__Ups and downs solfege__=  
Line 1,312: Line 1,333:
||= 22 ||= 0 ||= D ||=  ||=  ||</pre></div>
||= 22 ||= 0 ||= D ||=  ||=  ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Ups and Downs Notation&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:34:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#A 22edo example"&gt;A 22edo example&lt;/a&gt;&lt;/div&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Ups and Downs Notation&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:36:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#A 22edo example"&gt;A 22edo example&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Other EDOs"&gt;Other EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;!-- ws:start:WikiTextTocRule:38: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Other EDOs"&gt;Other EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#x22edo Chord Names"&gt;22edo Chord Names&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:38 --&gt;&lt;!-- ws:start:WikiTextTocRule:39: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#x22edo Chord Names"&gt;22edo Chord Names&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;!-- ws:start:WikiTextTocRule:38: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#toc3"&gt;&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:39 --&gt;&lt;!-- ws:start:WikiTextTocRule:40: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#toc3"&gt;&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:38 --&gt;&lt;!-- ws:start:WikiTextTocRule:39: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Chord names in other EDOs"&gt;Chord names in other EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:40 --&gt;&lt;!-- ws:start:WikiTextTocRule:41: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Chord names in other EDOs"&gt;Chord names in other EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:39 --&gt;&lt;!-- ws:start:WikiTextTocRule:40: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Cross-EDO considerations"&gt;Cross-EDO considerations&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:41 --&gt;&lt;!-- ws:start:WikiTextTocRule:42: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Cross-EDO considerations"&gt;Cross-EDO considerations&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:40 --&gt;&lt;!-- ws:start:WikiTextTocRule:41: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Scale Fragments"&gt;Scale Fragments&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:42 --&gt;&lt;!-- ws:start:WikiTextTocRule:43: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Scale Fragments"&gt;Scale Fragments&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:41 --&gt;&lt;!-- ws:start:WikiTextTocRule:42: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Summary of EDO notation"&gt;Summary of EDO notation&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:43 --&gt;&lt;!-- ws:start:WikiTextTocRule:44: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Summary of EDO notation"&gt;Summary of EDO notation&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:42 --&gt;&lt;!-- ws:start:WikiTextTocRule:43: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Summary of EDO notation-&amp;quot;Regular&amp;quot; EDOs"&gt;&amp;quot;Regular&amp;quot; EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:44 --&gt;&lt;!-- ws:start:WikiTextTocRule:45: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Summary of EDO notation-&amp;quot;Regular&amp;quot; EDOs"&gt;&amp;quot;Regular&amp;quot; EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:43 --&gt;&lt;!-- ws:start:WikiTextTocRule:44: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Summary of EDO notation-&amp;quot;Perfect&amp;quot; EDOs"&gt;&amp;quot;Perfect&amp;quot; EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:45 --&gt;&lt;!-- ws:start:WikiTextTocRule:46: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Summary of EDO notation-&amp;quot;Perfect&amp;quot; EDOs"&gt;&amp;quot;Perfect&amp;quot; EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:44 --&gt;&lt;!-- ws:start:WikiTextTocRule:45: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Summary of EDO notation-&amp;quot;Superflat&amp;quot; EDOs"&gt;&amp;quot;Superflat&amp;quot; EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:46 --&gt;&lt;!-- ws:start:WikiTextTocRule:47: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Summary of EDO notation-&amp;quot;Superflat&amp;quot; EDOs"&gt;&amp;quot;Superflat&amp;quot; EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:45 --&gt;&lt;!-- ws:start:WikiTextTocRule:46: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Summary of EDO notation-&amp;quot;Pentatonic&amp;quot; EDOs"&gt;&amp;quot;Pentatonic&amp;quot; EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:47 --&gt;&lt;!-- ws:start:WikiTextTocRule:48: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Summary of EDO notation-&amp;quot;Pentatonic&amp;quot; EDOs"&gt;&amp;quot;Pentatonic&amp;quot; EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:46 --&gt;&lt;!-- ws:start:WikiTextTocRule:47: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Summary of EDO notation-&amp;quot;Supersharp&amp;quot; EDOs"&gt;&amp;quot;Supersharp&amp;quot; EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:48 --&gt;&lt;!-- ws:start:WikiTextTocRule:49: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Summary of EDO notation-&amp;quot;Supersharp&amp;quot; EDOs"&gt;&amp;quot;Supersharp&amp;quot; EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:47 --&gt;&lt;!-- ws:start:WikiTextTocRule:48: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Ups and downs solfege"&gt;Ups and downs solfege&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:49 --&gt;&lt;!-- ws:start:WikiTextTocRule:50: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Alternate Generators"&gt;Alternate Generators&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:48 --&gt;&lt;!-- ws:start:WikiTextTocRule:49: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Rank-2 Scales: 8ve Periods"&gt;Rank-2 Scales: 8ve Periods&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:50 --&gt;&lt;!-- ws:start:WikiTextTocRule:51: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Ups and downs solfege"&gt;Ups and downs solfege&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:49 --&gt;&lt;!-- ws:start:WikiTextTocRule:50: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Rank-2 Scales: Non-8ve Periods"&gt;Rank-2 Scales: Non-8ve Periods&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:51 --&gt;&lt;!-- ws:start:WikiTextTocRule:52: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Rank-2 Scales: 8ve Periods"&gt;Rank-2 Scales: 8ve Periods&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:50 --&gt;&lt;!-- ws:start:WikiTextTocRule:51: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Generators other than a fifth"&gt;Generators other than a fifth&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:52 --&gt;&lt;!-- ws:start:WikiTextTocRule:53: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Rank-2 Scales: Non-8ve Periods"&gt;Rank-2 Scales: Non-8ve Periods&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:51 --&gt;&lt;!-- ws:start:WikiTextTocRule:52: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:53 --&gt;&lt;!-- ws:start:WikiTextTocRule:54: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Generators other than a fifth"&gt;Generators other than a fifth&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:52 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="A 22edo example"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;u&gt;A 22edo example&lt;/u&gt;&lt;/h1&gt;
&lt;!-- ws:end:WikiTextTocRule:54 --&gt;&lt;!-- ws:start:WikiTextTocRule:55: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:55 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="A 22edo example"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;u&gt;A 22edo example&lt;/u&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Ups and Downs is a notation system developed by &lt;a class="wiki_link" href="/KiteGiedraitis"&gt;Kite&lt;/a&gt; that works with almost all EDOs and rank 2 tunings. It only adds 3 symbols to standard notation, so it's very easy to learn. The name comes from the up symbol &amp;quot;^&amp;quot; and the down symbol &amp;quot;v&amp;quot;.&lt;br /&gt;
Ups and Downs is a notation system developed by &lt;a class="wiki_link" href="/KiteGiedraitis"&gt;Kite&lt;/a&gt; that works with almost all EDOs and rank 2 tunings. It only adds 3 symbols to standard notation, so it's very easy to learn. The name comes from the up symbol &amp;quot;^&amp;quot; and the down symbol &amp;quot;v&amp;quot;.&lt;br /&gt;
Line 1,423: Line 1,445:
This is in addition to the trivial EDOs, 2, 3, 4 and 6, which can be notated with standard notation as a subset of 12-EDO. The fifth is defined as the nearest approximation to 3/2. There is a little leeway to this in certain EDOs like 18 which have two possible fifths with nearly equal accuracy.&lt;br /&gt;
This is in addition to the trivial EDOs, 2, 3, 4 and 6, which can be notated with standard notation as a subset of 12-EDO. The fifth is defined as the nearest approximation to 3/2. There is a little leeway to this in certain EDOs like 18 which have two possible fifths with nearly equal accuracy.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:3395:&amp;lt;img src=&amp;quot;/file/view/The%20Scale%20Tree.png/623953169/800x1002/The%20Scale%20Tree.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 1002px; width: 800px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/The%20Scale%20Tree.png/623953169/800x1002/The%20Scale%20Tree.png" alt="The Scale Tree.png" title="The Scale Tree.png" style="height: 1002px; width: 800px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3395 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:3398:&amp;lt;img src=&amp;quot;/file/view/The%20Scale%20Tree.png/623953169/800x1002/The%20Scale%20Tree.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 1002px; width: 800px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/The%20Scale%20Tree.png/623953169/800x1002/The%20Scale%20Tree.png" alt="The Scale Tree.png" title="The Scale Tree.png" style="height: 1002px; width: 800px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3398 --&gt;&lt;br /&gt;
The above diagram is actually a section of the Stern-Brocot tree. The tree usually has ratios, not octave fractions (i.e. 4/7, not 4\7 as above). Also it's usually arranged vertically with nodes of the same &amp;quot;generation&amp;quot; occurring at the same height. For example, 5\9 and 7\12 are both children of 4\7, and would usually be level with each other. Here the nodes are arranged vertically by denominator, i.e., the EDO itself. This version of the Stern-Brocot tree is the scale tree. The colored regions of the tree are what I call &lt;strong&gt;kites&lt;/strong&gt;, and The heptatonic kite is blue and the pentatonic kite is orange. Every kite has a head (4\7 for the blue kite), a central spine (8\14, 12\21, etc.), a fifthward side on the right (7\12, 11\19, etc.) and a fourthward side on the left (5\9, 9\16, etc.). Every node on a spine is a &lt;strong&gt;spinal&lt;/strong&gt; node. Every non-spinal node is part of three kites. It's the head of one kite and on the side of two others.&lt;br /&gt;
The above diagram is actually a section of the Stern-Brocot tree. The tree usually has ratios, not octave fractions (i.e. 4/7, not 4\7 as above). Also it's usually arranged vertically with nodes of the same &amp;quot;generation&amp;quot; occurring at the same height. For example, 5\9 and 7\12 are both children of 4\7, and would usually be level with each other. Here the nodes are arranged vertically by denominator, i.e., the EDO itself. This version of the Stern-Brocot tree is the scale tree. The colored regions of the tree are what I call &lt;strong&gt;kites&lt;/strong&gt;, and The heptatonic kite is blue and the pentatonic kite is orange. Every kite has a head (4\7 for the blue kite), a central spine (8\14, 12\21, etc.), a fifthward side on the right (7\12, 11\19, etc.) and a fourthward side on the left (5\9, 9\16, etc.). Every node on a spine is a &lt;strong&gt;spinal&lt;/strong&gt; node. Every non-spinal node is part of three kites. It's the head of one kite and on the side of two others.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 1,730: Line 1,752:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:3396:&amp;lt;img src=&amp;quot;/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg/570451171/800x1035/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 1035px; width: 800px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg/570451171/800x1035/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg" alt="Tibia in G with ^v, rygb 1.jpg" title="Tibia in G with ^v, rygb 1.jpg" style="height: 1035px; width: 800px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3396 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:3399:&amp;lt;img src=&amp;quot;/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg/570451171/800x1035/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 1035px; width: 800px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg/570451171/800x1035/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg" alt="Tibia in G with ^v, rygb 1.jpg" title="Tibia in G with ^v, rygb 1.jpg" style="height: 1035px; width: 800px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3399 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;&lt;!-- ws:start:WikiTextLocalImageRule:3397:&amp;lt;img src=&amp;quot;/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg/570451199/800x957/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 957px; width: 800px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg/570451199/800x957/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg" alt="Tibia in G with ^v, rygb 2.jpg" title="Tibia in G with ^v, rygb 2.jpg" style="height: 957px; width: 800px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3397 --&gt;&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;&lt;!-- ws:start:WikiTextLocalImageRule:3400:&amp;lt;img src=&amp;quot;/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg/570451199/800x957/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 957px; width: 800px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg/570451199/800x957/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg" alt="Tibia in G with ^v, rygb 2.jpg" title="Tibia in G with ^v, rygb 2.jpg" style="height: 957px; width: 800px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3400 --&gt;&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Chord names in other EDOs"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;&lt;u&gt;Chord names in other EDOs&lt;/u&gt;&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Chord names in other EDOs"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;&lt;u&gt;Chord names in other EDOs&lt;/u&gt;&lt;/h1&gt;
Line 3,610: Line 3,632:
Another is to switch from heptatonic notation to some other type. Pentatonic notation is a natural fit, in the sense that no ups or downs are needed, for 8edo, 13edo and 18edo, but not 11edo.&lt;br /&gt;
Another is to switch from heptatonic notation to some other type. Pentatonic notation is a natural fit, in the sense that no ups or downs are needed, for 8edo, 13edo and 18edo, but not 11edo.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The third approach is to use some interval other than the fifth to generate the notation. Earlier I said notating 22edo using an even distribution of note names such as C _ _ D _ _ E _ _ F _ _ _ G _ _ A _ _ B _ _ C was a bad idea because the G-D and the A-E fifths looked perfect but were actually diminished. The reasoning is that 3/2 is an important ratio, and any decent approximation of 3/2 should look like a perfect fifth. But these EDOs don't approximate 3/2 well, so they can be thought of as having both a major fifth and a minor fifth. This negates any expectations of what a fifth should look like.&lt;br /&gt;
The third approach is to use an alternate generator, see the next chapter.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;u&gt;&lt;strong&gt;Pentatonic notation for 8edo, 11b-edo, 13edo and 18edo&lt;/strong&gt;&lt;/u&gt;&lt;br /&gt;
&lt;u&gt;&lt;strong&gt;Pentatonic notation for 8edo, 11b-edo, 13edo and 18edo&lt;/strong&gt;&lt;/u&gt;&lt;br /&gt;
Line 3,670: Line 3,692:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;u&gt;&lt;strong&gt;Alternate generators for 8edo, 11edo, 13edo and 18edo&lt;/strong&gt;&lt;/u&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc13"&gt;&lt;a name="Alternate Generators"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;&lt;u&gt;Alternate Generators&lt;/u&gt;&lt;/h1&gt;
&lt;br /&gt;
Ups and downs can be avoided entirely by using some interval other than the fifth to generate the notation. Earlier I said notating 22edo using an even distribution of note names such as C _ _ D _ _ E _ _ F _ _ _ G _ _ A _ _ B _ _ C was a bad idea because the G-D and the A-E fifths looked perfect but were actually diminished. The reasoning is that 3/2 is an important ratio, and any decent approximation of 3/2 should look like a perfect fifth. But EDOs like 8, 11, 13 and 18 don't approximate 3/2 well, so they can be thought of as having both a major fifth and a minor fifth. This negates any expectations of what a fifth should look like.&lt;br /&gt;
&lt;br /&gt;
Every EDO has a &amp;quot;natural&amp;quot; heptatonic generator. For 13-edo, it's a 2\13 2nd (and its octave inverse of course), because seven 2\13's falls only one EDOstep away from the octave. Thus the sharp means &amp;quot;sharpened by one EDO-step&amp;quot;, and ups and downs aren't needed. The generator is always perfect, so there's a perfect 2nd, a major &amp;amp; minor 3rd, 4th, 5th and 6th, and a perfect 7th.&lt;br /&gt;
&lt;br /&gt;
&lt;u&gt;&lt;strong&gt;Natural generators for 8edo, 11edo, 13edo and 18edo&lt;/strong&gt;&lt;/u&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;strong&gt;&lt;u&gt;8edo&lt;/u&gt;:&lt;/strong&gt; (generator = 1\8 = perfect 2nd = 150¢)&lt;br /&gt;
&lt;strong&gt;&lt;u&gt;8edo&lt;/u&gt;:&lt;/strong&gt; (generator = 1\8 = perfect 2nd = 150¢)&lt;br /&gt;
Line 3,683: Line 3,711:
D - D#/Eb - E - F - F#/Gb - G - A - A#/Bb - B - C - C#/Db - D&lt;br /&gt;
D - D#/Eb - E - F - F#/Gb - G - A - A#/Bb - B - C - C#/Db - D&lt;br /&gt;
P1 - m2 - M2 - P3 - m4 - M4 - m5 - M5 - P6 - m7 - M7 - P8&lt;br /&gt;
P1 - m2 - M2 - P3 - m4 - M4 - m5 - M5 - P6 - m7 - M7 - P8&lt;br /&gt;
sixthwards chain of thirds: M5 - M7 - M2 - M4 - P6 - P1 - P3 - m5 - m7 - m2 - m4 - d6 etc.&lt;br /&gt;
chain of thirds: M5 - M7 - M2 - M4 - P6 - P1 - P3 - m5 - m7 - m2 - m4 - d6 etc.&lt;br /&gt;
E# - G# - B# - D# - F# - A# - C# - E - G - B - D - F - A - C - Eb - Gb - Bb - Db - Fb - Ab - Cb&lt;br /&gt;
E# - G# - B# - D# - F# - A# - C# - E - G - B - D - F - A - C - Eb - Gb - Bb - Db - Fb - Ab - Cb&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 3,690: Line 3,718:
D - D#/Eb - E - E#/Fb - F - F#/Gb - G - A - A#/Bb - B - B#/Cb - C - C#/Db - D&lt;br /&gt;
D - D#/Eb - E - E#/Fb - F - F#/Gb - G - A - A#/Bb - B - B#/Cb - C - C#/Db - D&lt;br /&gt;
P1 - A1/d2 - P2 - m3 - M3 - m4 - M4 - m5 - M5 - m6 - M6 - P7 - A7/d8 - P8&lt;br /&gt;
P1 - A1/d2 - P2 - m3 - M3 - m4 - M4 - m5 - M5 - m6 - M6 - P7 - A7/d8 - P8&lt;br /&gt;
secondwards chain of seconds: m3 - m4 - m5 - m6 - P7 - P1 - P2 - M3 - M4 - M5 - M6 - A7 etc.&lt;br /&gt;
chain of seconds: m3 - m4 - m5 - m6 - P7 - P1 - P2 - M3 - M4 - M5 - M6 - A7 etc.&lt;br /&gt;
Ab - Bb - Cb - Db - Eb - Fb - Gb - A - B - C - D - E - F - G - A# - B# - C# - D# - E# - F# - G#&lt;br /&gt;
Ab - Bb - Cb - Db - Eb - Fb - Gb - A - B - C - D - E - F - G - A# - B# - C# - D# - E# - F# - G#&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 3,697: Line 3,725:
D - D# - Eb - E - E#/Fb - F - F# - Gb - G - G#/Ab - A - A# - Bb - B - B#/Cb - C - C# - Db - D&lt;br /&gt;
D - D# - Eb - E - E#/Fb - F - F# - Gb - G - G#/Ab - A - A# - Bb - B - B#/Cb - C - C# - Db - D&lt;br /&gt;
P1 - A1/d2 - m2 - M2 - A2/d3 - P3 - A3/d4 - m4 - M4 - A4/d5 - m5 - M5 - A5/d6 - P6 - A6/d7 - m7 - M7 - A7/d8 - P8&lt;br /&gt;
P1 - A1/d2 - m2 - M2 - A2/d3 - P3 - A3/d4 - m4 - M4 - A4/d5 - m5 - M5 - A5/d6 - P6 - A6/d7 - m7 - M7 - A7/d8 - P8&lt;br /&gt;
sixthwards chain of thirds: M5 - M7 - M2 - M4 - P6 - P1 - P3 - m5 - m7 - m2 - m4 - d6 etc.&lt;br /&gt;
chain of thirds: M5 - M7 - M2 - M4 - P6 - P1 - P3 - m5 - m7 - m2 - m4 - d6 etc.&lt;br /&gt;
E# - G# - B# - D# - F# - A# - C# - E - G - B - D - F - A - C - Eb - Gb - Bb - Db - Fb - Ab - Cb&lt;br /&gt;
E# - G# - B# - D# - F# - A# - C# - E - G - B - D - F - A - C - Eb - Gb - Bb - Db - Fb - Ab - Cb&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Natural generators can be used for other EDOs as well. For all EDOs with chroma 1, -1 or 0, the natural generator is the fifth, and there is no good alternative. For all chroma-2 and chroma-5 edos, the natural generator is a 3rd. For chroma-3 and chroma-4, it's a 2nd.&lt;br /&gt;
&lt;br /&gt;
For 22-edo, it's a 3\22 2nd &lt;br /&gt;
genchain: ...D# E# F# G# A B C D E F G Ab Bb Cb Db...&lt;br /&gt;
scale: D * * E * * F * * G * * * A * * B * * C * * D&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For 17-edo, the natural generator is the 5\17 3rd.&lt;br /&gt;
&lt;br /&gt;
For 15-edo, it's the 2\15 2nd.&lt;br /&gt;
For 12-edo, it's the 7\12 5th, which generates standard notation.&lt;br /&gt;
For 16-edo, it's the 9\16 5th.&lt;br /&gt;
For 21-edo, it's the 3\21 2nd, the 6\21 3rd, the 9\21 4th, the 12\21 5th, etc. All these intervals generate the same scale, and the same notation.&lt;br /&gt;
&lt;br /&gt;
You can easily find the natural generator using the scale tree. It's also related to the chroma. But it doesn't intrinsically depend on any ratios or commas, or on the prime limit.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc13"&gt;&lt;a name="Ups and downs solfege"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;&lt;u&gt;Ups and downs solfege&lt;/u&gt;&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:28:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc14"&gt;&lt;a name="Ups and downs solfege"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:28 --&gt;&lt;u&gt;Ups and downs solfege&lt;/u&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Solfege (do-re-mi) can be adapted to indicate sharp/flat and up/down:&lt;br /&gt;
Solfege (do-re-mi) can be adapted to indicate sharp/flat and up/down:&lt;br /&gt;
Line 3,732: Line 3,775:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:28:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc14"&gt;&lt;a name="Rank-2 Scales: 8ve Periods"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:28 --&gt;&lt;u&gt;Rank-2 Scales: 8ve Periods&lt;/u&gt;&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:30:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc15"&gt;&lt;a name="Rank-2 Scales: 8ve Periods"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:30 --&gt;&lt;u&gt;Rank-2 Scales: 8ve Periods&lt;/u&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Ups and downs can be used to notate rank-2 scales as well. Instead of edos like 12-edo, we'll be talking about &lt;strong&gt;frameworks&lt;/strong&gt; like 12-tone. The generator chain is called a &lt;strong&gt;genchain&lt;/strong&gt;. Fifth-generated rank-2 tunings can be notated without ups and downs in any framework on either side of the 4\7 kite (chroma 1 or -1):&lt;br /&gt;
Ups and downs can be used to notate rank-2 scales as well. Instead of edos like 12-edo, we'll be talking about &lt;strong&gt;frameworks&lt;/strong&gt; like 12-tone. The generator chain is called a &lt;strong&gt;genchain&lt;/strong&gt;. Fifth-generated rank-2 tunings can be notated without ups and downs in any framework on either side of the 4\7 kite (chroma 1 or -1):&lt;br /&gt;
Line 5,119: Line 5,162:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:30:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc15"&gt;&lt;a name="Rank-2 Scales: Non-8ve Periods"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:30 --&gt;&lt;u&gt;Rank-2 Scales: Non-8ve Periods&lt;/u&gt;&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:32:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc16"&gt;&lt;a name="Rank-2 Scales: Non-8ve Periods"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:32 --&gt;&lt;u&gt;Rank-2 Scales: Non-8ve Periods&lt;/u&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Fractional-period rank-2 temperaments have multiple genchains running in parallel. Multiple genchains occur because a rank-2 genchain is really a 2 dimensional &amp;quot;genweb&amp;quot;, running in octaves (or whatever the period is) vertically and fifths (or whatever the generator is) horizontally.&lt;br /&gt;
Fractional-period rank-2 temperaments have multiple genchains running in parallel. Multiple genchains occur because a rank-2 genchain is really a 2 dimensional &amp;quot;genweb&amp;quot;, running in octaves (or whatever the period is) vertically and fifths (or whatever the generator is) horizontally.&lt;br /&gt;
Line 5,192: Line 5,235:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:32:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc16"&gt;&lt;a name="Generators other than a fifth"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:32 --&gt;&lt;u&gt;Generators other than a fifth&lt;/u&gt;&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:34:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc17"&gt;&lt;a name="Generators other than a fifth"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:34 --&gt;&lt;u&gt;Generators other than a fifth&lt;/u&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
The main reason to use ups and downs is to allow fifth-generated heptatonic notation in frameworks and EDOs that aren't fully compatible with such a notation, i.e. those not on the sides of the 4\7 kite. The main reason to use a generator other than a fifth is to use a notation more compatible with one's chosen framework or EDO. Thus there is little reason to use ups and downs in such a situation.&lt;br /&gt;
The main reason to use ups and downs is to allow fifth-generated heptatonic notation in frameworks and EDOs that aren't fully compatible with such a notation, i.e. those not on the sides of the 4\7 kite. The main reason to use a generator other than a fifth is to use a notation more compatible with one's chosen framework or EDO. Thus there is little reason to use ups and downs in such a situation.&lt;br /&gt;