Tour of regular temperaments: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 240127623 - Original comment: **
Wikispaces>igliashon
**Imported revision 240147837 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-07-05 21:01:45 UTC</tt>.<br>
: This revision was by author [[User:igliashon|igliashon]] and made on <tt>2011-07-05 23:54:43 UTC</tt>.<br>
: The original revision id was <tt>240127623</tt>.<br>
: The original revision id was <tt>240147837</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 29: Line 29:


===[[Meantone family]]===  
===[[Meantone family]]===  
The meantone family tempers out 81/80 and has a flattened fifth (or sharpened fourth) as generator. Four of these flattened fifths give the 5/1 interval. Some meantone tunings are [[12edo]], [[19edo]], [[31edo]], [[43edo]], [[50edo]], [[55edo]] and [[81edo]]. Aside from equal divisions of the octave, regular tunings include flattening by 1/3, 2/7, 1/4, 1/5 and 1/6 Didymas comma (the 81/80 interval.)
The meantone family tempers out 81/80, the difference between 81/16 (3*3*3*3/2*2*2*2, a stack of four perfect fifths) and 80/16 (aka 5/1, the fifth harmonic) and has a flattened fifth (or sharpened fourth) as generator. Some meantone tunings are [[12edo]], [[19edo]], [[31edo]], [[43edo]], [[50edo]], [[55edo]] and [[81edo]]. Aside from equal divisions of the octave, regular tunings include flattening by 1/3, 2/7, 1/4, 1/5 and 1/6 the Syntonic comma (the 81/80 interval.)


===[[Schismatic family]]===  
===[[Schismatic family]]===  
The schismatic family tempers out the schisma of 32805/32768, which is the amount by which the Pythagorean comma exceeds the Didymas comma (81/80), or alternatively put, the difference between a just major third and a just diminished fourth. The 5-limit version of the temperament is a [[Microtempering|microtemperament]] which flattens the fifth by a fraction of a schisma, but other members of the family are less accurate. As a 5-limit system, it is far more accurate than meantone but still with manageable complexity.
The schismatic family tempers out the schisma of 32805/32768, which is the amount by which the Pythagorean comma exceeds the Didymas comma (81/80), or alternatively put, the difference between a just major third (5/4) and a just diminished fourth ((4/3)^8, divided by 8, or 8192/6561). The 5-limit version of the temperament is a [[Microtempering|microtemperament]] which flattens the fifth by a fraction of a schisma, but other members of the family are less accurate. As a 5-limit system, it is far more accurate than meantone but still with manageable complexity (it takes eight schismatic-tempered 3/2's to reach 5/4, as opposed to four meantone-tempered 3/2's).


===[[Kleismic family]]===  
===[[Kleismic family]]===  
The kleismic family of temperaments tempers out the kleisma of 15625/15552 and has a slightly sharpened minor third as a generator. The kleismic family includes [[15edo]], [[19edo]], [[34edo]], [[49edo]], [[53edo]], [[72edo]], [[87edo]] and [[140edo]] among its possible tunings.
The kleismic family of temperaments tempers out the kleisma of 15625/15552 (the difference between six 6/5's--23328/15625--and 3/2) and has a slightly sharpened minor third as a generator. The kleismic family includes [[15edo]], [[19edo]], [[34edo]], [[49edo]], [[53edo]], [[72edo]], [[87edo]] and [[140edo]] among its possible tunings.


===[[Magic family]]===  
===[[Magic family]]===  
The magic family tempers out 3125/3072, known as the magic comma or small diesis, has a generator which is a flattened major third.
The magic family tempers out 3125/3072, which is the difference between five 5/4's (3125/2048) and a 3/2, and is known as the magic comma or small diesis. It has a generator which is a flattened major third.


===[[Diaschismic family]]===  
===[[Diaschismic family]]===  
Line 44: Line 44:


===[[Porcupine family]]===  
===[[Porcupine family]]===  
The porcupine family tempers out 250/243, known as the maximal diesis or porcupine comma. It has a generator of a minor whole tone (10/9), three of which make up a fourth.
The porcupine family tempers out 250/243, the difference between three 10/9's (1000/729) and 4/3, known as the maximal diesis or porcupine comma. It has a generator of a minor whole tone (10/9), three of which make up a fourth.


===[[Wuerschmidt family]]===  
===[[Wuerschmidt family]]===  
The wuerschmidt family tempers out Wuerschmidt's comma, 393216/390625 = |17 1 -8&gt;. Wuerschmidt itself has a generator of a major third, eight of which give a 6; that is, (5/4)^8 * (393216/390625) = 6. Both [[31edo]] and [[34edo]] can be used as wuerschmit tunings, as can [[65edo]], which is quite accurate.
The wuerschmidt family tempers out Wuerschmidt's comma, 393216/390625 = |17 1 -8&gt;. Wuerschmidt itself has a generator of a major third, eight of which give a 6/1 (the 6th harmonic, or a perfect 5th two octaves up); that is, (5/4)^8 * (393216/390625) = 6. Both [[31edo]] and [[34edo]] can be used as wuerschmit tunings, as can [[65edo]], which is quite accurate.


===[[Augmented family]]===  
===[[Augmented family]]===  
The augmented family tempers out the diesis of 128/125, and so identifies the major third with 1/3 octave. Hence it has the same 400 cent thirds as [[12edo]], which is an excellent tuning for augmented.
The augmented family tempers out the diesis of 128/125, the difference between three 5/4 major 3rds and a 2/1 octave, and so identifies the major third with 1/3 octave. Hence it has the same 400 cent thirds as [[12edo]], which is an excellent tuning for augmented.


===[[Dicot family]]===  
===[[Dicot family]]===  
The dicot family is a low-accuracy family of temperaments which temper out the chromatic semitone, 25/24, and hence identify major and minor thirds. [[7edo]] makes for a good dicot tuning.
The dicot family is a low-accuracy family of temperaments which temper out the chromatic semitone, 25/24 (the difference between 5/4 and 6/5, or alternatively the difference between two 5/4's and 3/2 OR two 6/5's and 3/2), and hence identify major and minor thirds. [[7edo]] makes for a "good" dicot tuning, although it is questionable whether this temperament bears any actual resemblance to 5-limit harmony. Two of the "neutral" dicot 3rds span a 3/2.


===[[Tetracot family]]===  
===[[Tetracot family]]===  
The tetracot family is a much higher accuracy affair than the dicot family. Instead of taking two neutral thirds to reach 3/2, it takes four minor (10/9) whole tones. Four of these exceed 3/2 by 20000/19683, the minimal diesis or tetracot comma.
The tetracot family is a much higher accuracy affair than the dicot family. Instead of taking two neutral thirds to reach 3/2, it takes four minor (10/9) whole tones. Four of these exceed 3/2 by 20000/19683, the minimal diesis or tetracot comma. 7edo can also be considered a tetracot tuning, as can 20edo, 27edo, 34edo, and 41edo.


===[[Sensipent family]]===  
===[[Sensipent family]]===  
Line 291: Line 291:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc3"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Meantone family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;&lt;a class="wiki_link" href="/Meantone%20family"&gt;Meantone family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc3"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Meantone family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;&lt;a class="wiki_link" href="/Meantone%20family"&gt;Meantone family&lt;/a&gt;&lt;/h3&gt;
  The meantone family tempers out 81/80 and has a flattened fifth (or sharpened fourth) as generator. Four of these flattened fifths give the 5/1 interval. Some meantone tunings are &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;, &lt;a class="wiki_link" href="/19edo"&gt;19edo&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt;, &lt;a class="wiki_link" href="/43edo"&gt;43edo&lt;/a&gt;, &lt;a class="wiki_link" href="/50edo"&gt;50edo&lt;/a&gt;, &lt;a class="wiki_link" href="/55edo"&gt;55edo&lt;/a&gt; and &lt;a class="wiki_link" href="/81edo"&gt;81edo&lt;/a&gt;. Aside from equal divisions of the octave, regular tunings include flattening by 1/3, 2/7, 1/4, 1/5 and 1/6 Didymas comma (the 81/80 interval.)&lt;br /&gt;
  The meantone family tempers out 81/80, the difference between 81/16 (3*3*3*3/2*2*2*2, a stack of four perfect fifths) and 80/16 (aka 5/1, the fifth harmonic) and has a flattened fifth (or sharpened fourth) as generator. Some meantone tunings are &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;, &lt;a class="wiki_link" href="/19edo"&gt;19edo&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt;, &lt;a class="wiki_link" href="/43edo"&gt;43edo&lt;/a&gt;, &lt;a class="wiki_link" href="/50edo"&gt;50edo&lt;/a&gt;, &lt;a class="wiki_link" href="/55edo"&gt;55edo&lt;/a&gt; and &lt;a class="wiki_link" href="/81edo"&gt;81edo&lt;/a&gt;. Aside from equal divisions of the octave, regular tunings include flattening by 1/3, 2/7, 1/4, 1/5 and 1/6 the Syntonic comma (the 81/80 interval.)&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc4"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Schismatic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;&lt;a class="wiki_link" href="/Schismatic%20family"&gt;Schismatic family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc4"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Schismatic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;&lt;a class="wiki_link" href="/Schismatic%20family"&gt;Schismatic family&lt;/a&gt;&lt;/h3&gt;
  The schismatic family tempers out the schisma of 32805/32768, which is the amount by which the Pythagorean comma exceeds the Didymas comma (81/80), or alternatively put, the difference between a just major third and a just diminished fourth. The 5-limit version of the temperament is a &lt;a class="wiki_link" href="/Microtempering"&gt;microtemperament&lt;/a&gt; which flattens the fifth by a fraction of a schisma, but other members of the family are less accurate. As a 5-limit system, it is far more accurate than meantone but still with manageable complexity.&lt;br /&gt;
  The schismatic family tempers out the schisma of 32805/32768, which is the amount by which the Pythagorean comma exceeds the Didymas comma (81/80), or alternatively put, the difference between a just major third (5/4) and a just diminished fourth ((4/3)^8, divided by 8, or 8192/6561). The 5-limit version of the temperament is a &lt;a class="wiki_link" href="/Microtempering"&gt;microtemperament&lt;/a&gt; which flattens the fifth by a fraction of a schisma, but other members of the family are less accurate. As a 5-limit system, it is far more accurate than meantone but still with manageable complexity (it takes eight schismatic-tempered 3/2's to reach 5/4, as opposed to four meantone-tempered 3/2's).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc5"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Kleismic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;&lt;a class="wiki_link" href="/Kleismic%20family"&gt;Kleismic family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc5"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Kleismic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;&lt;a class="wiki_link" href="/Kleismic%20family"&gt;Kleismic family&lt;/a&gt;&lt;/h3&gt;
  The kleismic family of temperaments tempers out the kleisma of 15625/15552 and has a slightly sharpened minor third as a generator. The kleismic family includes &lt;a class="wiki_link" href="/15edo"&gt;15edo&lt;/a&gt;, &lt;a class="wiki_link" href="/19edo"&gt;19edo&lt;/a&gt;, &lt;a class="wiki_link" href="/34edo"&gt;34edo&lt;/a&gt;, &lt;a class="wiki_link" href="/49edo"&gt;49edo&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt;, &lt;a class="wiki_link" href="/72edo"&gt;72edo&lt;/a&gt;, &lt;a class="wiki_link" href="/87edo"&gt;87edo&lt;/a&gt; and &lt;a class="wiki_link" href="/140edo"&gt;140edo&lt;/a&gt; among its possible tunings.&lt;br /&gt;
  The kleismic family of temperaments tempers out the kleisma of 15625/15552 (the difference between six 6/5's--23328/15625--and 3/2) and has a slightly sharpened minor third as a generator. The kleismic family includes &lt;a class="wiki_link" href="/15edo"&gt;15edo&lt;/a&gt;, &lt;a class="wiki_link" href="/19edo"&gt;19edo&lt;/a&gt;, &lt;a class="wiki_link" href="/34edo"&gt;34edo&lt;/a&gt;, &lt;a class="wiki_link" href="/49edo"&gt;49edo&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt;, &lt;a class="wiki_link" href="/72edo"&gt;72edo&lt;/a&gt;, &lt;a class="wiki_link" href="/87edo"&gt;87edo&lt;/a&gt; and &lt;a class="wiki_link" href="/140edo"&gt;140edo&lt;/a&gt; among its possible tunings.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc6"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Magic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;&lt;a class="wiki_link" href="/Magic%20family"&gt;Magic family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc6"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Magic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;&lt;a class="wiki_link" href="/Magic%20family"&gt;Magic family&lt;/a&gt;&lt;/h3&gt;
  The magic family tempers out 3125/3072, known as the magic comma or small diesis, has a generator which is a flattened major third.&lt;br /&gt;
  The magic family tempers out 3125/3072, which is the difference between five 5/4's (3125/2048) and a 3/2, and is known as the magic comma or small diesis. It has a generator which is a flattened major third.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc7"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Diaschismic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;&lt;a class="wiki_link" href="/Diaschismic%20family"&gt;Diaschismic family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc7"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Diaschismic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;&lt;a class="wiki_link" href="/Diaschismic%20family"&gt;Diaschismic family&lt;/a&gt;&lt;/h3&gt;
Line 306: Line 306:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc8"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Porcupine family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;&lt;a class="wiki_link" href="/Porcupine%20family"&gt;Porcupine family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc8"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Porcupine family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;&lt;a class="wiki_link" href="/Porcupine%20family"&gt;Porcupine family&lt;/a&gt;&lt;/h3&gt;
  The porcupine family tempers out 250/243, known as the maximal diesis or porcupine comma. It has a generator of a minor whole tone (10/9), three of which make up a fourth.&lt;br /&gt;
  The porcupine family tempers out 250/243, the difference between three 10/9's (1000/729) and 4/3, known as the maximal diesis or porcupine comma. It has a generator of a minor whole tone (10/9), three of which make up a fourth.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc9"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Wuerschmidt family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;&lt;a class="wiki_link" href="/Wuerschmidt%20family"&gt;Wuerschmidt family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc9"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Wuerschmidt family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;&lt;a class="wiki_link" href="/Wuerschmidt%20family"&gt;Wuerschmidt family&lt;/a&gt;&lt;/h3&gt;
  The wuerschmidt family tempers out Wuerschmidt's comma, 393216/390625 = |17 1 -8&amp;gt;. Wuerschmidt itself has a generator of a major third, eight of which give a 6; that is, (5/4)^8 * (393216/390625) = 6. Both &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; and &lt;a class="wiki_link" href="/34edo"&gt;34edo&lt;/a&gt; can be used as wuerschmit tunings, as can &lt;a class="wiki_link" href="/65edo"&gt;65edo&lt;/a&gt;, which is quite accurate.&lt;br /&gt;
  The wuerschmidt family tempers out Wuerschmidt's comma, 393216/390625 = |17 1 -8&amp;gt;. Wuerschmidt itself has a generator of a major third, eight of which give a 6/1 (the 6th harmonic, or a perfect 5th two octaves up); that is, (5/4)^8 * (393216/390625) = 6. Both &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; and &lt;a class="wiki_link" href="/34edo"&gt;34edo&lt;/a&gt; can be used as wuerschmit tunings, as can &lt;a class="wiki_link" href="/65edo"&gt;65edo&lt;/a&gt;, which is quite accurate.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc10"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Augmented family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;&lt;a class="wiki_link" href="/Augmented%20family"&gt;Augmented family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc10"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Augmented family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;&lt;a class="wiki_link" href="/Augmented%20family"&gt;Augmented family&lt;/a&gt;&lt;/h3&gt;
  The augmented family tempers out the diesis of 128/125, and so identifies the major third with 1/3 octave. Hence it has the same 400 cent thirds as &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;, which is an excellent tuning for augmented.&lt;br /&gt;
  The augmented family tempers out the diesis of 128/125, the difference between three 5/4 major 3rds and a 2/1 octave, and so identifies the major third with 1/3 octave. Hence it has the same 400 cent thirds as &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;, which is an excellent tuning for augmented.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc11"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Dicot family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;&lt;a class="wiki_link" href="/Dicot%20family"&gt;Dicot family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc11"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Dicot family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;&lt;a class="wiki_link" href="/Dicot%20family"&gt;Dicot family&lt;/a&gt;&lt;/h3&gt;
  The dicot family is a low-accuracy family of temperaments which temper out the chromatic semitone, 25/24, and hence identify major and minor thirds. &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt; makes for a good dicot tuning.&lt;br /&gt;
  The dicot family is a low-accuracy family of temperaments which temper out the chromatic semitone, 25/24 (the difference between 5/4 and 6/5, or alternatively the difference between two 5/4's and 3/2 OR two 6/5's and 3/2), and hence identify major and minor thirds. &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt; makes for a &amp;quot;good&amp;quot; dicot tuning, although it is questionable whether this temperament bears any actual resemblance to 5-limit harmony. Two of the &amp;quot;neutral&amp;quot; dicot 3rds span a 3/2.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc12"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Tetracot family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;&lt;a class="wiki_link" href="/Tetracot%20family"&gt;Tetracot family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc12"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Tetracot family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;&lt;a class="wiki_link" href="/Tetracot%20family"&gt;Tetracot family&lt;/a&gt;&lt;/h3&gt;
  The tetracot family is a much higher accuracy affair than the dicot family. Instead of taking two neutral thirds to reach 3/2, it takes four minor (10/9) whole tones. Four of these exceed 3/2 by 20000/19683, the minimal diesis or tetracot comma.&lt;br /&gt;
  The tetracot family is a much higher accuracy affair than the dicot family. Instead of taking two neutral thirds to reach 3/2, it takes four minor (10/9) whole tones. Four of these exceed 3/2 by 20000/19683, the minimal diesis or tetracot comma. 7edo can also be considered a tetracot tuning, as can 20edo, 27edo, 34edo, and 41edo.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc13"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Sensipent family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;&lt;a class="wiki_link" href="/Sensipent%20family"&gt;Sensipent family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc13"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Sensipent family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;&lt;a class="wiki_link" href="/Sensipent%20family"&gt;Sensipent family&lt;/a&gt;&lt;/h3&gt;