Tour of regular temperaments: Difference between revisions

Wikispaces>clumma
**Imported revision 250890816 - Original comment: **
Wikispaces>Natebedell
**Imported revision 250907230 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:clumma|clumma]] and made on <tt>2011-09-05 13:52:49 UTC</tt>.<br>
: This revision was by author [[User:Natebedell|Natebedell]] and made on <tt>2011-09-05 15:02:23 UTC</tt>.<br>
: The original revision id was <tt>250890816</tt>.<br>
: The original revision id was <tt>250907230</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 52: Line 52:
===[[Diaschismic family]]===  
===[[Diaschismic family]]===  
The diaschismic family tempers out 2048/2025, the diaschisma. It has a half-octave period and its generator is an approximate 3/2. Diaschismic tunings include [[12edo]], [[22edo]], [[34edo]], [[46edo]], [[56edo]], [[58edo]] and [[80edo]]. Using [[22edo]] as a tuning is associated with [[pajara]] temperament, where the intervals 50/49 and 64/63 are tempered out.
The diaschismic family tempers out 2048/2025, the diaschisma. It has a half-octave period and its generator is an approximate 3/2. Diaschismic tunings include [[12edo]], [[22edo]], [[34edo]], [[46edo]], [[56edo]], [[58edo]] and [[80edo]]. Using [[22edo]] as a tuning is associated with [[pajara]] temperament, where the intervals 50/49 and 64/63 are tempered out.
===[[Pelogic family]]===
This tempers out the pelogic comma, 135/128, also known as the major chroma or major limma.


===[[Porcupine family]]===  
===[[Porcupine family]]===  
Line 101: Line 104:
This tempers out the vishnuzma, |23 6 -14&gt;.
This tempers out the vishnuzma, |23 6 -14&gt;.


===[[Pelogic family]]===
This tempers out the pelogic comma, 135/128, also known as the major chroma or major limma.


===[[Bug family]]===  
===[[Bug family]]===  
Line 325: Line 326:
  The diaschismic family tempers out 2048/2025, the diaschisma. It has a half-octave period and its generator is an approximate 3/2. Diaschismic tunings include &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;, &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt;, &lt;a class="wiki_link" href="/34edo"&gt;34edo&lt;/a&gt;, &lt;a class="wiki_link" href="/46edo"&gt;46edo&lt;/a&gt;, &lt;a class="wiki_link" href="/56edo"&gt;56edo&lt;/a&gt;, &lt;a class="wiki_link" href="/58edo"&gt;58edo&lt;/a&gt; and &lt;a class="wiki_link" href="/80edo"&gt;80edo&lt;/a&gt;. Using &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt; as a tuning is associated with &lt;a class="wiki_link" href="/pajara"&gt;pajara&lt;/a&gt; temperament, where the intervals 50/49 and 64/63 are tempered out.&lt;br /&gt;
  The diaschismic family tempers out 2048/2025, the diaschisma. It has a half-octave period and its generator is an approximate 3/2. Diaschismic tunings include &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;, &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt;, &lt;a class="wiki_link" href="/34edo"&gt;34edo&lt;/a&gt;, &lt;a class="wiki_link" href="/46edo"&gt;46edo&lt;/a&gt;, &lt;a class="wiki_link" href="/56edo"&gt;56edo&lt;/a&gt;, &lt;a class="wiki_link" href="/58edo"&gt;58edo&lt;/a&gt; and &lt;a class="wiki_link" href="/80edo"&gt;80edo&lt;/a&gt;. Using &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt; as a tuning is associated with &lt;a class="wiki_link" href="/pajara"&gt;pajara&lt;/a&gt; temperament, where the intervals 50/49 and 64/63 are tempered out.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc10"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Porcupine family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;&lt;a class="wiki_link" href="/Porcupine%20family"&gt;Porcupine family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc10"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Pelogic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;&lt;a class="wiki_link" href="/Pelogic%20family"&gt;Pelogic family&lt;/a&gt;&lt;/h3&gt;
This tempers out the pelogic comma, 135/128, also known as the major chroma or major limma.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc11"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Porcupine family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;&lt;a class="wiki_link" href="/Porcupine%20family"&gt;Porcupine family&lt;/a&gt;&lt;/h3&gt;
  The porcupine family tempers out 250/243, the difference between three 10/9's (1000/729) and 4/3, known as the maximal diesis or porcupine comma. It has a generator of a minor whole tone (10/9), three of which make up a fourth.&lt;br /&gt;
  The porcupine family tempers out 250/243, the difference between three 10/9's (1000/729) and 4/3, known as the maximal diesis or porcupine comma. It has a generator of a minor whole tone (10/9), three of which make up a fourth.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc11"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Wuerschmidt family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;&lt;a class="wiki_link" href="/Wuerschmidt%20family"&gt;Wuerschmidt family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc12"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Wuerschmidt family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;&lt;a class="wiki_link" href="/Wuerschmidt%20family"&gt;Wuerschmidt family&lt;/a&gt;&lt;/h3&gt;
  The wuerschmidt family tempers out Wuerschmidt's comma, 393216/390625 = |17 1 -8&amp;gt;. Wuerschmidt itself has a generator of a major third, eight of which give a 6/1 (the 6th harmonic, or a perfect 5th two octaves up); that is, (5/4)^8 * (393216/390625) = 6. Both &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; and &lt;a class="wiki_link" href="/34edo"&gt;34edo&lt;/a&gt; can be used as wuerschmit tunings, as can &lt;a class="wiki_link" href="/65edo"&gt;65edo&lt;/a&gt;, which is quite accurate.&lt;br /&gt;
  The wuerschmidt family tempers out Wuerschmidt's comma, 393216/390625 = |17 1 -8&amp;gt;. Wuerschmidt itself has a generator of a major third, eight of which give a 6/1 (the 6th harmonic, or a perfect 5th two octaves up); that is, (5/4)^8 * (393216/390625) = 6. Both &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; and &lt;a class="wiki_link" href="/34edo"&gt;34edo&lt;/a&gt; can be used as wuerschmit tunings, as can &lt;a class="wiki_link" href="/65edo"&gt;65edo&lt;/a&gt;, which is quite accurate.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc12"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Augmented family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;&lt;a class="wiki_link" href="/Augmented%20family"&gt;Augmented family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc13"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Augmented family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;&lt;a class="wiki_link" href="/Augmented%20family"&gt;Augmented family&lt;/a&gt;&lt;/h3&gt;
  The augmented family tempers out the diesis of 128/125, the difference between three 5/4 major thirds and a 2/1 octave, and so identifies the major third with the third-octave. Hence it has the same 400-cent 5/4-approximations as &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;, which is an excellent tuning for augmented.&lt;br /&gt;
  The augmented family tempers out the diesis of 128/125, the difference between three 5/4 major thirds and a 2/1 octave, and so identifies the major third with the third-octave. Hence it has the same 400-cent 5/4-approximations as &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;, which is an excellent tuning for augmented.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc13"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Dicot family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;&lt;a class="wiki_link" href="/Dicot%20family"&gt;Dicot family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:28:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc14"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Dicot family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:28 --&gt;&lt;a class="wiki_link" href="/Dicot%20family"&gt;Dicot family&lt;/a&gt;&lt;/h3&gt;
  The dicot family is a low-accuracy family of temperaments which temper out the chromatic semitone, 25/24 (the difference between 5/4 and 6/5, or alternatively the difference between two 5/4's and 3/2 OR two 6/5's and 3/2), and hence identify major and minor thirds. &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt; makes for a &amp;quot;good&amp;quot; dicot tuning, although it is questionable whether this temperament bears any actual resemblance to 5-limit harmony. Two of the &amp;quot;neutral&amp;quot; dicot 3rds span a 3/2.&lt;br /&gt;
  The dicot family is a low-accuracy family of temperaments which temper out the chromatic semitone, 25/24 (the difference between 5/4 and 6/5, or alternatively the difference between two 5/4's and 3/2 OR two 6/5's and 3/2), and hence identify major and minor thirds. &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt; makes for a &amp;quot;good&amp;quot; dicot tuning, although it is questionable whether this temperament bears any actual resemblance to 5-limit harmony. Two of the &amp;quot;neutral&amp;quot; dicot 3rds span a 3/2.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:28:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc14"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Tetracot family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:28 --&gt;&lt;a class="wiki_link" href="/Tetracot%20family"&gt;Tetracot family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:30:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc15"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Tetracot family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:30 --&gt;&lt;a class="wiki_link" href="/Tetracot%20family"&gt;Tetracot family&lt;/a&gt;&lt;/h3&gt;
  The tetracot family is a much higher accuracy affair than the dicot family. Instead of taking two neutral thirds to reach 3/2, it takes four minor (10/9) whole tones. Four of these exceed 3/2 by 20000/19683, the minimal diesis or tetracot comma. 7edo can also be considered a tetracot tuning, as can 20edo, 27edo, 34edo, and 41edo.&lt;br /&gt;
  The tetracot family is a much higher accuracy affair than the dicot family. Instead of taking two neutral thirds to reach 3/2, it takes four minor (10/9) whole tones. Four of these exceed 3/2 by 20000/19683, the minimal diesis or tetracot comma. 7edo can also be considered a tetracot tuning, as can 20edo, 27edo, 34edo, and 41edo.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:30:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc15"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Sensipent family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:30 --&gt;&lt;a class="wiki_link" href="/Sensipent%20family"&gt;Sensipent family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:32:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc16"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Sensipent family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:32 --&gt;&lt;a class="wiki_link" href="/Sensipent%20family"&gt;Sensipent family&lt;/a&gt;&lt;/h3&gt;
  This tempers out the sensipent comma, 78732/78125, also known as the medium semicomma.&lt;br /&gt;
  This tempers out the sensipent comma, 78732/78125, also known as the medium semicomma.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:32:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc16"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Orwell and the semicomma family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:32 --&gt;&lt;a class="wiki_link" href="/Semicomma%20family"&gt;Orwell and the semicomma family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:34:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc17"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Orwell and the semicomma family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:34 --&gt;&lt;a class="wiki_link" href="/Semicomma%20family"&gt;Orwell and the semicomma family&lt;/a&gt;&lt;/h3&gt;
  The semicomma (also known as &lt;strong&gt;Fokker's comma)&lt;/strong&gt; 2109375/2097152 = |-21 3 7&amp;gt; is tempered out by the members of the semicomma family. It doesn't have much independent existence as a 5-limit temperament, since its generator has a natural interpretation as 7/6, leading to orwell temperament.&lt;br /&gt;
  The semicomma (also known as &lt;strong&gt;Fokker's comma)&lt;/strong&gt; 2109375/2097152 = |-21 3 7&amp;gt; is tempered out by the members of the semicomma family. It doesn't have much independent existence as a 5-limit temperament, since its generator has a natural interpretation as 7/6, leading to orwell temperament.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:34:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc17"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Pythagorean family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:34 --&gt;&lt;a class="wiki_link" href="/Pythagorean%20family"&gt;Pythagorean family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:36:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc18"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Pythagorean family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:36 --&gt;&lt;a class="wiki_link" href="/Pythagorean%20family"&gt;Pythagorean family&lt;/a&gt;&lt;/h3&gt;
  The Pythagorean family tempers out the Pythagorean comma, |-19 12 0&amp;gt;. Since this is a 3-limit comma, it is also a 5-limit comma and can stand as parent to a 7-limit or higher family, in this case containing compton temperament and catler temperament.&lt;br /&gt;
  The Pythagorean family tempers out the Pythagorean comma, |-19 12 0&amp;gt;. Since this is a 3-limit comma, it is also a 5-limit comma and can stand as parent to a 7-limit or higher family, in this case containing compton temperament and catler temperament.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:36:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc18"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Apotome family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:36 --&gt;&lt;a class="wiki_link" href="/Apotome%20family"&gt;Apotome family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:38:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc19"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Apotome family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:38 --&gt;&lt;a class="wiki_link" href="/Apotome%20family"&gt;Apotome family&lt;/a&gt;&lt;/h3&gt;
  This family tempers out the apotome, 2187/2048, which is a 3-limit comma.&lt;br /&gt;
  This family tempers out the apotome, 2187/2048, which is a 3-limit comma.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:38:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc19"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Gammic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:38 --&gt;&lt;a class="wiki_link" href="/Gammic%20family"&gt;Gammic family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:40:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc20"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Gammic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:40 --&gt;&lt;a class="wiki_link" href="/Gammic%20family"&gt;Gammic family&lt;/a&gt;&lt;/h3&gt;
  The gammic family tempers out the gammic comma, |-29 -11 20&amp;gt;. The head of the family is 5-limit gammic, whose generator chain is &lt;a class="wiki_link" href="/Carlos%20Gamma"&gt;Carlos Gamma&lt;/a&gt;. Another member is Neptune temperament.&lt;br /&gt;
  The gammic family tempers out the gammic comma, |-29 -11 20&amp;gt;. The head of the family is 5-limit gammic, whose generator chain is &lt;a class="wiki_link" href="/Carlos%20Gamma"&gt;Carlos Gamma&lt;/a&gt;. Another member is Neptune temperament.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:40:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc20"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Minortonic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:40 --&gt;&lt;a class="wiki_link" href="/Minortonic%20family"&gt;Minortonic family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:42:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc21"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Minortonic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:42 --&gt;&lt;a class="wiki_link" href="/Minortonic%20family"&gt;Minortonic family&lt;/a&gt;&lt;/h3&gt;
  This tempers out the minortone comma, |-16 35 -17&amp;gt;. The head of the family is minortonic temperament, with generator a minor tone.&lt;br /&gt;
  This tempers out the minortone comma, |-16 35 -17&amp;gt;. The head of the family is minortonic temperament, with generator a minor tone.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:42:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc21"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Sycamore family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:42 --&gt;&lt;a class="wiki_link" href="/Sycamore%20family"&gt;Sycamore family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:44:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc22"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Sycamore family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:44 --&gt;&lt;a class="wiki_link" href="/Sycamore%20family"&gt;Sycamore family&lt;/a&gt;&lt;/h3&gt;
  The sycamore family tempers out the sycamore comma, |-16 -6 11&amp;gt; = 48828125/47775744, which is the amount by which five stacked chromatic semitones, 25/24, exceed 6/5, and hence also the amount six exceeds 5/4.&lt;br /&gt;
  The sycamore family tempers out the sycamore comma, |-16 -6 11&amp;gt; = 48828125/47775744, which is the amount by which five stacked chromatic semitones, 25/24, exceed 6/5, and hence also the amount six exceeds 5/4.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:44:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc22"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Mutt family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:44 --&gt;&lt;a class="wiki_link" href="/Mutt%20family"&gt;Mutt family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:46:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc23"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Mutt family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:46 --&gt;&lt;a class="wiki_link" href="/Mutt%20family"&gt;Mutt family&lt;/a&gt;&lt;/h3&gt;
  This tempers out the mutt comma, |-44 -3 21&amp;gt;, leading to some strange properties.&lt;br /&gt;
  This tempers out the mutt comma, |-44 -3 21&amp;gt;, leading to some strange properties.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:46:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc23"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Escapade family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:46 --&gt;&lt;a class="wiki_link" href="/Escapade%20family"&gt;Escapade family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:48:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc24"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Escapade family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:48 --&gt;&lt;a class="wiki_link" href="/Escapade%20family"&gt;Escapade family&lt;/a&gt;&lt;/h3&gt;
  This tempers out escapade, |32 -7 -9&amp;gt;.&lt;br /&gt;
  This tempers out escapade, |32 -7 -9&amp;gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:48:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc24"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Vulture family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:48 --&gt;&lt;a class="wiki_link" href="/Vulture%20family"&gt;Vulture family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:50:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc25"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Vulture family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:50 --&gt;&lt;a class="wiki_link" href="/Vulture%20family"&gt;Vulture family&lt;/a&gt;&lt;/h3&gt;
  This tempers out the vulture comma, |24 -21 4&amp;gt;.&lt;br /&gt;
  This tempers out the vulture comma, |24 -21 4&amp;gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:50:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc25"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Vishnuzmic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:50 --&gt;&lt;a class="wiki_link" href="/Vishnuzmic%20family"&gt;Vishnuzmic family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:52:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc26"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Vishnuzmic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:52 --&gt;&lt;a class="wiki_link" href="/Vishnuzmic%20family"&gt;Vishnuzmic family&lt;/a&gt;&lt;/h3&gt;
  This tempers out the vishnuzma, |23 6 -14&amp;gt;.&lt;br /&gt;
  This tempers out the vishnuzma, |23 6 -14&amp;gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:52:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc26"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Pelogic family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:52 --&gt;&lt;a class="wiki_link" href="/Pelogic%20family"&gt;Pelogic family&lt;/a&gt;&lt;/h3&gt;
This tempers out the pelogic comma, 135/128, also known as the major chroma or major limma.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:54:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc27"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Bug family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:54 --&gt;&lt;a class="wiki_link" href="/Bug%20family"&gt;Bug family&lt;/a&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:54:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc27"&gt;&lt;a name="Rank 2 (including &amp;quot;linear&amp;quot;) temperaments--Bug family"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:54 --&gt;&lt;a class="wiki_link" href="/Bug%20family"&gt;Bug family&lt;/a&gt;&lt;/h3&gt;