The wedgie: Difference between revisions
Wikispaces>genewardsmith **Imported revision 296094174 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 296112860 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-01- | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-01-28 02:35:08 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>296112860</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 28: | Line 28: | ||
[[math]] | [[math]] | ||
From this we can conclude that d, e and f satisfy |d - q3b + q5a| ≤ | From this we can conclude that d, e and f satisfy |d - q3b + q5a| ≤ 2Eq3q5, |e - q3c + q7a| ≤ 2Eq3q7 and |f - q5c + q7d| ≤ 2Eq5q7. This has an interesting interpretation: since <1 q3 q5 q7|∧<0 a b c| = <<a b c q3b-q5a q3c-q7a q5c-q7b||, if E ≤ 1/(4q5q7), then the full wedgie can be recovered from the octave equivalent (OE) portion of the wedgie simply by wedging it with <1 q3 q5 q7| and rounding to the nearest integer. This is not a very serious constraint to place on relative error; it seems unlikely anyone would be interested in a temperament which did not fall well under this low standard. Hence we may compile lists of reasonable temperaments by presuming "reasonable" requires this bound to be met, searching through triples <<a b c ...|| (note that if all of these are zero, 2 is being tempered out) up to some complexity bound, wedging with <1 q3 q5 q7| and rounding, then checking if the GCD is one and the Pfaffian af-be+cd is zero. Then we may toss everthing which does not meet the bound on relative error; however, for a reasonable list we will want a tighter bound. | ||
If C = ||W|| is the TE complexity, then the formula for the [[Tenney-Euclidean metrics#Logflat TE badness|logflat badness]] B in the 7-limit rank-two case is particularly simple: B = CE. If complexity is bounded by, for example, 20 (which allows for some quite complex temperaments) then since E ≤ 1/( | If C = ||W|| is the TE complexity, then the formula for the [[Tenney-Euclidean metrics#Logflat TE badness|logflat badness]] B in the 7-limit rank-two case is particularly simple: B = CE. If complexity is bounded by, for example, 20 (which allows for some quite complex temperaments) then since E ≤ 1/(4q5q7), B ≤ 20/(4q5q7) = 0.767. This badness figure is easily met. While simply bounding complexity will lead to a finite list, the list would be enormous. An alternative is also to bound badness; for instance, we might produce a list of 7-limit rank-two temperaments with complexity less than 20 and a more reasonable badness limit, such as 0.05 or 0.06. | ||
=Reconstituting wedgies in general= | =Reconstituting wedgies in general= | ||
Essentially the same situation obtains for rank two temperaments in higher limits. The rule then is that if E ≤ 1/(C(n, 3) | Essentially the same situation obtains for rank two temperaments in higher limits. The rule then is that if E ≤ 1/(C(n, 3)lb(q)lb(p)) then wedging K = <1 lb(3) lb(5) ... lb(p)| with the val consisting of 0 followed by the first n-1 coefficients of the wedgie and rounding will give the wedgie. Here p and q are the largest and second largest primes in the prime limit, lb(x) is log base two, and C(n, 3) is n choose three, n(n-1)(n-2)/6. | ||
More generally, we can reconstitute W by rounding Y = (W∨2)∧K to the nearest integer coefficients, where K is the JI point <1 lb(3) lb(5) ... lb(p)| in unweighted coordinates. Then we have ||(W-Y)+Y|| ≤ ||W-Y|| + ||Y|| by the triangle inequality, and since ||W-Y|| is bounded by the fact that W has been obtained by rounding, complexity, which is ||(W-Y)+Y||=||W||, can be bounded by ||Y||; which means it can be bounded by the coefficients of Y, which are those coefficients of W which can be found in W∨2 and over which we could be conducting a search. Moreover, we have from Y∧K = ((W∨2)∧K)∧K = 0 that relative error, which is ||W∧K||, is ||((W-Y) + Y)∧K||=||(W-Y)∧K||, hence relative error is also bounded by the fact that ||W-Y|| is bounded. This means that unless relative error is large, W can be recovered by rounding Y, and hence all wedgies within such a bound can be found by a search on only some prospective coefficients. Search spaces for complexity measures such as [[Tenney-Euclidean temperament measures#TE Complexity|TE complexity]] which are defined in terms of the wedgie can be obtained by assuming all wedgie coefficients which are not being used to reconstitute a wedgie are zero, which gives a minimum value for the complexity. In the case of rank two temperaments, an especially efficient complexity measure for such searches, and one with some other desirable properties, is [[generator complexity]]. | More generally, we can reconstitute W by rounding Y = (W∨2)∧K to the nearest integer coefficients, where K is the JI point <1 lb(3) lb(5) ... lb(p)| in unweighted coordinates. Then we have ||(W-Y)+Y|| ≤ ||W-Y|| + ||Y|| by the triangle inequality, and since ||W-Y|| is bounded by the fact that W has been obtained by rounding, complexity, which is ||(W-Y)+Y||=||W||, can be bounded by ||Y||; which means it can be bounded by the coefficients of Y, which are those coefficients of W which can be found in W∨2 and over which we could be conducting a search. Moreover, we have from Y∧K = ((W∨2)∧K)∧K = 0 that relative error, which is ||W∧K||, is ||((W-Y) + Y)∧K||=||(W-Y)∧K||, hence relative error is also bounded by the fact that ||W-Y|| is bounded. This means that unless relative error is large, W can be recovered by rounding Y, and hence all wedgies within such a bound can be found by a search on only some prospective coefficients. Search spaces for complexity measures such as [[Tenney-Euclidean temperament measures#TE Complexity|TE complexity]] which are defined in terms of the wedgie can be obtained by assuming all wedgie coefficients which are not being used to reconstitute a wedgie are zero, which gives a minimum value for the complexity. In the case of rank two temperaments, an especially efficient complexity measure for such searches, and one with some other desirable properties, is [[generator complexity]]. | ||
In the particular case of the 11-limit in rank three, we have that (W∨2)∧K gives the full wedgie, which has ten coefficents, in terms of the first six upon rounding off. Using this for a search is less difficult than it sounds, since the complexity numbers for rank three are so much lower. If the relative error E satisifes E ≤ 1/(2√5 q5q7q11), then the rounding off is guaranteed to lead to the correct result. This amount, 0.0099, is again easily met. | |||
</pre></div> | </pre></div> | ||
Line 63: | Line 65: | ||
+(\frac{f}{q_5q_7}-\frac{e}{q_3q_7}+\frac{d}{q_3q_5})^2 = 4 E^2</script><!-- ws:end:WikiTextMathRule:0 --><br /> | +(\frac{f}{q_5q_7}-\frac{e}{q_3q_7}+\frac{d}{q_3q_5})^2 = 4 E^2</script><!-- ws:end:WikiTextMathRule:0 --><br /> | ||
<br /> | <br /> | ||
From this we can conclude that d, e and f satisfy |d - q3b + q5a| ≤ | From this we can conclude that d, e and f satisfy |d - q3b + q5a| ≤ 2Eq3q5, |e - q3c + q7a| ≤ 2Eq3q7 and |f - q5c + q7d| ≤ 2Eq5q7. This has an interesting interpretation: since &lt;1 q3 q5 q7|∧&lt;0 a b c| = &lt;&lt;a b c q3b-q5a q3c-q7a q5c-q7b||, if E ≤ 1/(4q5q7), then the full wedgie can be recovered from the octave equivalent (OE) portion of the wedgie simply by wedging it with &lt;1 q3 q5 q7| and rounding to the nearest integer. This is not a very serious constraint to place on relative error; it seems unlikely anyone would be interested in a temperament which did not fall well under this low standard. Hence we may compile lists of reasonable temperaments by presuming &quot;reasonable&quot; requires this bound to be met, searching through triples &lt;&lt;a b c ...|| (note that if all of these are zero, 2 is being tempered out) up to some complexity bound, wedging with &lt;1 q3 q5 q7| and rounding, then checking if the GCD is one and the Pfaffian af-be+cd is zero. Then we may toss everthing which does not meet the bound on relative error; however, for a reasonable list we will want a tighter bound. <br /> | ||
<br /> | <br /> | ||
If C = ||W|| is the TE complexity, then the formula for the <a class="wiki_link" href="/Tenney-Euclidean%20metrics#Logflat TE badness">logflat badness</a> B in the 7-limit rank-two case is particularly simple: B = CE. If complexity is bounded by, for example, 20 (which allows for some quite complex temperaments) then since E ≤ 1/( | If C = ||W|| is the TE complexity, then the formula for the <a class="wiki_link" href="/Tenney-Euclidean%20metrics#Logflat TE badness">logflat badness</a> B in the 7-limit rank-two case is particularly simple: B = CE. If complexity is bounded by, for example, 20 (which allows for some quite complex temperaments) then since E ≤ 1/(4q5q7), B ≤ 20/(4q5q7) = 0.767. This badness figure is easily met. While simply bounding complexity will lead to a finite list, the list would be enormous. An alternative is also to bound badness; for instance, we might produce a list of 7-limit rank-two temperaments with complexity less than 20 and a more reasonable badness limit, such as 0.05 or 0.06.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:7:&lt;h1&gt; --><h1 id="toc3"><a name="Reconstituting wedgies in general"></a><!-- ws:end:WikiTextHeadingRule:7 -->Reconstituting wedgies in general</h1> | <!-- ws:start:WikiTextHeadingRule:7:&lt;h1&gt; --><h1 id="toc3"><a name="Reconstituting wedgies in general"></a><!-- ws:end:WikiTextHeadingRule:7 -->Reconstituting wedgies in general</h1> | ||
Essentially the same situation obtains for rank two temperaments in higher limits. The rule then is that if E ≤ 1/(C(n, 3) | Essentially the same situation obtains for rank two temperaments in higher limits. The rule then is that if E ≤ 1/(C(n, 3)lb(q)lb(p)) then wedging K = &lt;1 lb(3) lb(5) ... lb(p)| with the val consisting of 0 followed by the first n-1 coefficients of the wedgie and rounding will give the wedgie. Here p and q are the largest and second largest primes in the prime limit, lb(x) is log base two, and C(n, 3) is n choose three, n(n-1)(n-2)/6.<br /> | ||
<br /> | |||
More generally, we can reconstitute W by rounding Y = (W∨2)∧K to the nearest integer coefficients, where K is the JI point &lt;1 lb(3) lb(5) ... lb(p)| in unweighted coordinates. Then we have ||(W-Y)+Y|| ≤ ||W-Y|| + ||Y|| by the triangle inequality, and since ||W-Y|| is bounded by the fact that W has been obtained by rounding, complexity, which is ||(W-Y)+Y||=||W||, can be bounded by ||Y||; which means it can be bounded by the coefficients of Y, which are those coefficients of W which can be found in W∨2 and over which we could be conducting a search. Moreover, we have from Y∧K = ((W∨2)∧K)∧K = 0 that relative error, which is ||W∧K||, is ||((W-Y) + Y)∧K||=||(W-Y)∧K||, hence relative error is also bounded by the fact that ||W-Y|| is bounded. This means that unless relative error is large, W can be recovered by rounding Y, and hence all wedgies within such a bound can be found by a search on only some prospective coefficients. Search spaces for complexity measures such as <a class="wiki_link" href="/Tenney-Euclidean%20temperament%20measures#TE Complexity">TE complexity</a> which are defined in terms of the wedgie can be obtained by assuming all wedgie coefficients which are not being used to reconstitute a wedgie are zero, which gives a minimum value for the complexity. In the case of rank two temperaments, an especially efficient complexity measure for such searches, and one with some other desirable properties, is <a class="wiki_link" href="/generator%20complexity">generator complexity</a>.<br /> | |||
<br /> | <br /> | ||
In the particular case of the 11-limit in rank three, we have that (W∨2)∧K gives the full wedgie, which has ten coefficents, in terms of the first six upon rounding off. Using this for a search is less difficult than it sounds, since the complexity numbers for rank three are so much lower. If the relative error E satisifes E ≤ 1/(2√5 q5q7q11), then the rounding off is guaranteed to lead to the correct result. This amount, 0.0099, is again easily met.</body></html></pre></div> |