The wedgie: Difference between revisions
Wikispaces>genewardsmith **Imported revision 515067722 - Original comment: ** |
Wikispaces>clumma **Imported revision 535153166 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:clumma|clumma]] and made on <tt>2014-12-14 22:40:45 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>535153166</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 8: | Line 8: | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]] | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]] | ||
=Basics= | =Basics= | ||
The //[[Wedgies and Multivals|wedgie]]// is a way of defining and working with an [[abstract regular temperament]]. If one takes r independent [[vals]] in a p-limit group of n primes, then the wedgie is defined by taking the [[Wedgies and Multivals|wedge product]] of the vals, and dividing out the greatest common divisior of the coefficients, to produce an r-multival. If the first non-zero coefficient of this multival is negative, it is then scalar multiplied by -1, changing the sign of the first non-zero coefficient to be positive. The result is the wedgie. Wedgies are in a one-to-one relationship with abstract regular temperaments; that is, regular temperaments where no tuning has been decided on. | The //[[Wedgies and Multivals|wedgie]]// is a way of defining and working with an [[abstract regular temperament]]. If one takes r independent [[vals]] in a p-limit group of n primes, then the wedgie is defined by taking the [[Wedgies and Multivals|wedge product]] of the vals, and dividing out the greatest common divisior of the coefficients, to produce an r-multival. If the first non-zero coefficient of this multival is negative, it is then scalar multiplied by -1, changing the sign of the first non-zero coefficient to be positive. The result is the wedgie. Wedgies are in a one-to-one relationship with abstract regular temperaments; that is, regular temperaments where no tuning has been decided on. | ||
Line 45: | Line 44: | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>The wedgie</title></head><body><!-- ws:start:WikiTextTocRule:11:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:11 --><!-- ws:start:WikiTextTocRule:12: --><a href="#Basics">Basics</a><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --> | <a href="#Truncation of wedgies">Truncation of wedgies</a><!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextTocRule:14: --> | <a href="#Conditions on being a wedgie">Conditions on being a wedgie</a><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --> | <a href="#Constrained wedgies">Constrained wedgies</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: --> | <a href="#Reconstituting wedgies in general">Reconstituting wedgies in general</a><!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextTocRule:17: --> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>The wedgie</title></head><body><!-- ws:start:WikiTextTocRule:11:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:11 --><!-- ws:start:WikiTextTocRule:12: --><a href="#Basics">Basics</a><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --> | <a href="#Truncation of wedgies">Truncation of wedgies</a><!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextTocRule:14: --> | <a href="#Conditions on being a wedgie">Conditions on being a wedgie</a><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --> | <a href="#Constrained wedgies">Constrained wedgies</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: --> | <a href="#Reconstituting wedgies in general">Reconstituting wedgies in general</a><!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextTocRule:17: --> | ||
<!-- ws:end:WikiTextTocRule:17 --><br /> | <!-- ws:end:WikiTextTocRule:17 --><br /> | ||
<!-- ws:start:WikiTextHeadingRule:1:&lt;h1&gt; --><h1 id="toc0"><a name="Basics"></a><!-- ws:end:WikiTextHeadingRule:1 -->Basics</h1> | <!-- ws:start:WikiTextHeadingRule:1:&lt;h1&gt; --><h1 id="toc0"><a name="Basics"></a><!-- ws:end:WikiTextHeadingRule:1 -->Basics</h1> | ||
The <em><a class="wiki_link" href="/Wedgies%20and%20Multivals">wedgie</a></em> is a way of defining and working with an <a class="wiki_link" href="/abstract%20regular%20temperament">abstract regular temperament</a>. If one takes r independent <a class="wiki_link" href="/vals">vals</a> in a p-limit group of n primes, then the wedgie is defined by taking the <a class="wiki_link" href="/Wedgies%20and%20Multivals">wedge product</a> of the vals, and dividing out the greatest common divisior of the coefficients, to produce an r-multival. If the first non-zero coefficient of this multival is negative, it is then scalar multiplied by -1, changing the sign of the first non-zero coefficient to be positive. The result is the wedgie. Wedgies are in a one-to-one relationship with abstract regular temperaments; that is, regular temperaments where no tuning has been decided on.<br /> | The <em><a class="wiki_link" href="/Wedgies%20and%20Multivals">wedgie</a></em> is a way of defining and working with an <a class="wiki_link" href="/abstract%20regular%20temperament">abstract regular temperament</a>. If one takes r independent <a class="wiki_link" href="/vals">vals</a> in a p-limit group of n primes, then the wedgie is defined by taking the <a class="wiki_link" href="/Wedgies%20and%20Multivals">wedge product</a> of the vals, and dividing out the greatest common divisior of the coefficients, to produce an r-multival. If the first non-zero coefficient of this multival is negative, it is then scalar multiplied by -1, changing the sign of the first non-zero coefficient to be positive. The result is the wedgie. Wedgies are in a one-to-one relationship with abstract regular temperaments; that is, regular temperaments where no tuning has been decided on.<br /> |