The Riemann zeta function and tuning: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 219174312 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 219175574 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-04-11 12:25:56 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-04-11 12:29:06 UTC</tt>.<br>
: The original revision id was <tt>219174312</tt>.<br>
: The original revision id was <tt>219175574</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 111: Line 111:
[[math]]
[[math]]


The Dirichlet series for the zeta function is absolutely convergent when s&gt;1, justifying the rearrangement of terms leading to the alternating series for eta, which converges conditionally in the critical strip. The extra factor introduces zeros of the eta function at the points 1 + 2pi i x/ln(x) corresponding to pure octave divisions along the line s=1, but no other zeros, and in particular none in the critical strip and along the critical line. The convergence of the alternating series can be greatly accelerated by applying [[http://en.wikipedia.org/wiki/Euler_summation|Euler summation]].
The Dirichlet series for the zeta function is absolutely convergent when s&gt;1, justifying the rearrangement of terms leading to the alternating series for eta, which converges conditionally in the critical strip. The extra factor introduces zeros of the eta function at the points 1 + 2pi i x/ln(2) corresponding to pure octave divisions along the line s=1, but no other zeros, and in particular none in the critical strip and along the critical line. The convergence of the alternating series can be greatly accelerated by applying [[http://en.wikipedia.org/wiki/Euler_summation|Euler summation]].


=Links=
=Links=
Line 237: Line 237:
= \frac{1}{1^z} - \frac{1}{2^z} + \frac{1}{3^z} - \frac{1}{4^z} + \cdots&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:11 --&gt;&lt;br /&gt;
= \frac{1}{1^z} - \frac{1}{2^z} + \frac{1}{3^z} - \frac{1}{4^z} + \cdots&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:11 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The Dirichlet series for the zeta function is absolutely convergent when s&amp;gt;1, justifying the rearrangement of terms leading to the alternating series for eta, which converges conditionally in the critical strip. The extra factor introduces zeros of the eta function at the points 1 + 2pi i x/ln(x) corresponding to pure octave divisions along the line s=1, but no other zeros, and in particular none in the critical strip and along the critical line. The convergence of the alternating series can be greatly accelerated by applying &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Euler_summation" rel="nofollow"&gt;Euler summation&lt;/a&gt;.&lt;br /&gt;
The Dirichlet series for the zeta function is absolutely convergent when s&amp;gt;1, justifying the rearrangement of terms leading to the alternating series for eta, which converges conditionally in the critical strip. The extra factor introduces zeros of the eta function at the points 1 + 2pi i x/ln(2) corresponding to pure octave divisions along the line s=1, but no other zeros, and in particular none in the critical strip and along the critical line. The convergence of the alternating series can be greatly accelerated by applying &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Euler_summation" rel="nofollow"&gt;Euler summation&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;Links&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;Links&lt;/h1&gt;
&lt;a class="wiki_link_ext" href="http://front.math.ucdavis.edu/0309.5433" rel="nofollow"&gt;X-Ray of Riemann zeta-function&lt;/a&gt; by Juan Arias-de-Reyna&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://front.math.ucdavis.edu/0309.5433" rel="nofollow"&gt;X-Ray of Riemann zeta-function&lt;/a&gt; by Juan Arias-de-Reyna&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://terrytao.wordpress.com/2009/07/12/selbergs-limit-theorem-for-the-riemann-zeta-function-on-the-critical-line/" rel="nofollow"&gt;Selberg's limit theorem&lt;/a&gt; by Terence Tao &lt;a class="wiki_link_ext" href="http://www.webcitation.org/5xrvgjW6T" rel="nofollow"&gt;Permalink&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;a class="wiki_link_ext" href="http://terrytao.wordpress.com/2009/07/12/selbergs-limit-theorem-for-the-riemann-zeta-function-on-the-critical-line/" rel="nofollow"&gt;Selberg's limit theorem&lt;/a&gt; by Terence Tao &lt;a class="wiki_link_ext" href="http://www.webcitation.org/5xrvgjW6T" rel="nofollow"&gt;Permalink&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>