The Riemann zeta function and tuning: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 250508176 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 250508378 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-03 13:34:09 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-03 13:36:14 UTC</tt>.<br>
: The original revision id was <tt>250508176</tt>.<br>
: The original revision id was <tt>250508378</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 127: Line 127:


[[math]]
[[math]]
1 + \frac{1}{p} - \frac{2 \cos(\ln\ p t)}{\sqrt{p}}
1 + \frac{1}{p} - \frac{2 \cos(\ln p\ t)}{\sqrt{p}}
[[math]]
[[math]]


Line 284: Line 284:
&lt;!-- ws:start:WikiTextMathRule:12:
&lt;!-- ws:start:WikiTextMathRule:12:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
1 + \frac{1}{p} - \frac{2 \cos(\ln\ p t)}{\sqrt{p}}&amp;lt;br/&amp;gt;[[math]]
1 + \frac{1}{p} - \frac{2 \cos(\ln p\ t)}{\sqrt{p}}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;1 + \frac{1}{p} - \frac{2 \cos(\ln\ p t)}{\sqrt{p}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:12 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;1 + \frac{1}{p} - \frac{2 \cos(\ln p\ t)}{\sqrt{p}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:12 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Multiplying the Z-function by this factor of adjustment gives a Z-function with the prime p removed from consideration. Zeta peak and zeta integral tunings may then be found as before.&lt;br /&gt;
Multiplying the Z-function by this factor of adjustment gives a Z-function with the prime p removed from consideration. Zeta peak and zeta integral tunings may then be found as before.&lt;br /&gt;