The Riemann zeta function and tuning: Difference between revisions
Wikispaces>mbattaglia1 **Imported revision 250529746 - Original comment: ** |
Wikispaces>mbattaglia1 **Imported revision 250535182 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2011-09-03 17 | : This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2011-09-03 18:17:10 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>250535182</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 11: | Line 11: | ||
Suppose that x can also be continuous, so that it can also represent fractional or "nonoctave" divisions as well. The Bohlen-Pierce scale, 13 equal divisions of 3/1, is approximately 8.202 equal divisions of the "octave" (although the octave itself does not appear in this tuning), and would hence be represented by a value of x = 8.202. | Suppose that x can also be continuous, so that it can also represent fractional or "nonoctave" divisions as well. The Bohlen-Pierce scale, 13 equal divisions of 3/1, is approximately 8.202 equal divisions of the "octave" (although the octave itself does not appear in this tuning), and would hence be represented by a value of x = 8.202. | ||
Now suppose that ||x|| denotes the difference between x and the integer nearest to x. For example, ||8.202|| would be .202, since it's the difference between 8.202 and the nearest integer, which is 8. ||7.95|| would be .05, which is the difference between 7.95 and the nearest integer, which is 8. Mathematically speaking, ||x|| denotes the function x - floor(x+1/2). | |||
For any value of x, we can construct a p-limit [[patent val]]. We do so by rounding log2(q)*x to the nearest integer for each prime q up to p. The [[Tenney-Euclidean metrics|Tenney-Euclidean error]] for this val will be | |||
[[math]] | [[math]] | ||
Line 156: | Line 158: | ||
Suppose that x can also be continuous, so that it can also represent fractional or &quot;nonoctave&quot; divisions as well. The Bohlen-Pierce scale, 13 equal divisions of 3/1, is approximately 8.202 equal divisions of the &quot;octave&quot; (although the octave itself does not appear in this tuning), and would hence be represented by a value of x = 8.202.<br /> | Suppose that x can also be continuous, so that it can also represent fractional or &quot;nonoctave&quot; divisions as well. The Bohlen-Pierce scale, 13 equal divisions of 3/1, is approximately 8.202 equal divisions of the &quot;octave&quot; (although the octave itself does not appear in this tuning), and would hence be represented by a value of x = 8.202.<br /> | ||
<br /> | <br /> | ||
Now suppose that ||x|| denotes the difference between x and the integer nearest to x. For example, ||8.202|| would be .202, since it's the difference between 8.202 and the nearest integer, which is 8. ||7.95|| would be .05, which is the difference between 7.95 and the nearest integer, which is 8. Mathematically speaking, ||x|| denotes the function x - floor(x+1/2).<br /> | |||
<br /> | |||
For any value of x, we can construct a p-limit <a class="wiki_link" href="/patent%20val">patent val</a>. We do so by rounding log2(q)*x to the nearest integer for each prime q up to p. The <a class="wiki_link" href="/Tenney-Euclidean%20metrics">Tenney-Euclidean error</a> for this val will be<br /> | |||
<br /> | <br /> | ||
<!-- ws:start:WikiTextMathRule:0: | <!-- ws:start:WikiTextMathRule:0: |