Tetrachord: Difference between revisions

Wikispaces>Andrew_Heathwaite
**Imported revision 86879901 - Original comment: **
Wikispaces>Andrew_Heathwaite
**Imported revision 87401237 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2009-09-02 16:57:24 UTC</tt>.<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2009-09-06 14:29:42 UTC</tt>.<br>
: The original revision id was <tt>86879901</tt>.<br>
: The original revision id was <tt>87401237</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 65: Line 65:
==Superparticular Intervals==  
==Superparticular Intervals==  


In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are superparticular-- meaning of the form n/n-1 (eg. 5/4, 6/5, 11/10, 39/38...).</pre></div>
In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are superparticular-- meaning of the form n/n-1 (eg. 5/4, 6/5, 11/10, 39/38...).
 
 
=Tetrachords Generalized=
 
All tetrachords share the interval of a perfect fourth, but they vary in the other two intervals. Assuming a just fourth, we can name the two variable intervals //a// &amp; //b//, &amp; then write our generalized tetrachord like this:
 
1/1, a, b, 4/3
 
We can build a heptatonic scale by copying this tetrachord at the perfect fifth. Thus:
 
1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1
 
Between 3/2 and 4/3, we have 9/8, so another way to write it would be:
 
[tetrachord], 9/8, [tetrachord]
 
When a tetrachord is paired with its copy, in this way, I call it a "heptatonic mirror." Of course, a tetrachord doesn't need to be paired with its copy. You might pair it with a dissimilar tetrachord (eg. 1/1, c, d, 4/3):
 
1/1, a, b, 4/3, 3/2, 3c/2, 3d/2, 2/1
 
==Modes of a heptatonic mirror==
 
Going back to our generalized heptatonic mirror, let's take a look at what modes we get by starting on different scale degrees.
 
|| mode 1 || 1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1 ||
|| mode 2 || 1/1, ||
||  ||  ||
||  ||  ||
||  ||  ||
||  ||  ||
||  ||  ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;tetrachord&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Related pages: &lt;a class="wiki_link" href="/22edo%20tetrachords"&gt;22edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/17edo%20tetrachords"&gt;17edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/Tricesimoprimal%20Tetrachordal%20Tesseract"&gt;Tricesimoprimal Tetrachordal Tesseract&lt;/a&gt;&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;tetrachord&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Related pages: &lt;a class="wiki_link" href="/22edo%20tetrachords"&gt;22edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/17edo%20tetrachords"&gt;17edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/Tricesimoprimal%20Tetrachordal%20Tesseract"&gt;Tricesimoprimal Tetrachordal Tesseract&lt;/a&gt;&lt;br /&gt;
Line 277: Line 308:
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Ancient Greek Genera-Superparticular Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Superparticular Intervals&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Ancient Greek Genera-Superparticular Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Superparticular Intervals&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are superparticular-- meaning of the form n/n-1 (eg. 5/4, 6/5, 11/10, 39/38...).&lt;/body&gt;&lt;/html&gt;</pre></div>
In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are superparticular-- meaning of the form n/n-1 (eg. 5/4, 6/5, 11/10, 39/38...).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="Tetrachords Generalized"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Tetrachords Generalized&lt;/h1&gt;
&lt;br /&gt;
All tetrachords share the interval of a perfect fourth, but they vary in the other two intervals. Assuming a just fourth, we can name the two variable intervals &lt;em&gt;a&lt;/em&gt; &amp;amp; &lt;em&gt;b&lt;/em&gt;, &amp;amp; then write our generalized tetrachord like this:&lt;br /&gt;
&lt;br /&gt;
1/1, a, b, 4/3&lt;br /&gt;
&lt;br /&gt;
We can build a heptatonic scale by copying this tetrachord at the perfect fifth. Thus:&lt;br /&gt;
&lt;br /&gt;
1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1&lt;br /&gt;
&lt;br /&gt;
Between 3/2 and 4/3, we have 9/8, so another way to write it would be:&lt;br /&gt;
&lt;br /&gt;
[tetrachord], 9/8, [tetrachord]&lt;br /&gt;
&lt;br /&gt;
When a tetrachord is paired with its copy, in this way, I call it a &amp;quot;heptatonic mirror.&amp;quot; Of course, a tetrachord doesn't need to be paired with its copy. You might pair it with a dissimilar tetrachord (eg. 1/1, c, d, 4/3):&lt;br /&gt;
&lt;br /&gt;
1/1, a, b, 4/3, 3/2, 3c/2, 3d/2, 2/1&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="Tetrachords Generalized-Modes of a heptatonic mirror"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Modes of a heptatonic mirror&lt;/h2&gt;
&lt;br /&gt;
Going back to our generalized heptatonic mirror, let's take a look at what modes we get by starting on different scale degrees.&lt;br /&gt;
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;mode 1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;mode 2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1,&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;/body&gt;&lt;/html&gt;</pre></div>