Tetrachord: Difference between revisions

Wikispaces>hstraub
**Imported revision 318986654 - Original comment: **
Wikispaces>hstraub
**Imported revision 318988062 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2012-04-10 03:40:32 UTC</tt>.<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2012-04-10 03:48:18 UTC</tt>.<br>
: The original revision id was <tt>318986654</tt>.<br>
: The original revision id was <tt>318988062</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 15: Line 15:


[[toc|flat]]
[[toc|flat]]
----
----


Line 67: Line 66:
In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are [[superparticular]].
In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are [[superparticular]].


=Ajnas (tetrachords in middle-eastern music)=
The concept of the tetrachord is extensively used in [[Arabic, Turkish, Persian|middle eastern]] music theory. The arabic word for tetrachord is "jins" (singular form) or "ajnas" (plural form).
See [[http://www.maqamworld.com/|http://www.maqamworld.com]] for details.


=Tetrachords Generalized=  
=Tetrachords Generalized=  
Line 162: Line 165:
Related pages: &lt;a class="wiki_link" href="/22edo%20tetrachords"&gt;22edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/17edo%20tetrachords"&gt;17edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/Tricesimoprimal%20Tetrachordal%20Tesseract"&gt;Tricesimoprimal Tetrachordal Tesseract&lt;/a&gt;&lt;br /&gt;
Related pages: &lt;a class="wiki_link" href="/22edo%20tetrachords"&gt;22edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/17edo%20tetrachords"&gt;17edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/Tricesimoprimal%20Tetrachordal%20Tesseract"&gt;Tricesimoprimal Tetrachordal Tesseract&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextTocRule:28:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;!-- ws:start:WikiTextTocRule:29: --&gt;&lt;a href="#Ancient Greek Genera"&gt;Ancient Greek Genera&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:29 --&gt;&lt;!-- ws:start:WikiTextTocRule:30: --&gt;&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt;&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt;&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt;&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt; | &lt;a href="#Tetrachords Generalized"&gt;Tetrachords Generalized&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;!-- ws:start:WikiTextTocRule:38: --&gt;&lt;!-- ws:end:WikiTextTocRule:38 --&gt;&lt;!-- ws:start:WikiTextTocRule:39: --&gt; | &lt;a href="#Tetrachords in equal temperaments"&gt;Tetrachords in equal temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:39 --&gt;&lt;!-- ws:start:WikiTextTocRule:40: --&gt;&lt;!-- ws:end:WikiTextTocRule:40 --&gt;&lt;!-- ws:start:WikiTextTocRule:41: --&gt; | &lt;a href="#Dividing Other-Than-Perfect Fourths"&gt;Dividing Other-Than-Perfect Fourths&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:41 --&gt;&lt;!-- ws:start:WikiTextTocRule:42: --&gt; | &lt;a href="#Tetrachords And Non-Octave Scales"&gt;Tetrachords And Non-Octave Scales&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:42 --&gt;&lt;!-- ws:start:WikiTextTocRule:43: --&gt;
&lt;!-- ws:start:WikiTextTocRule:30:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt;&lt;a href="#Ancient Greek Genera"&gt;Ancient Greek Genera&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt;&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt;&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt;&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;!-- ws:start:WikiTextTocRule:38: --&gt; | &lt;a href="#Ajnas (tetrachords in middle-eastern music)"&gt;Ajnas (tetrachords in middle-eastern music)&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:38 --&gt;&lt;!-- ws:start:WikiTextTocRule:39: --&gt; | &lt;a href="#Tetrachords Generalized"&gt;Tetrachords Generalized&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:39 --&gt;&lt;!-- ws:start:WikiTextTocRule:40: --&gt;&lt;!-- ws:end:WikiTextTocRule:40 --&gt;&lt;!-- ws:start:WikiTextTocRule:41: --&gt;&lt;!-- ws:end:WikiTextTocRule:41 --&gt;&lt;!-- ws:start:WikiTextTocRule:42: --&gt; | &lt;a href="#Tetrachords in equal temperaments"&gt;Tetrachords in equal temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:42 --&gt;&lt;!-- ws:start:WikiTextTocRule:43: --&gt;&lt;!-- ws:end:WikiTextTocRule:43 --&gt;&lt;!-- ws:start:WikiTextTocRule:44: --&gt; | &lt;a href="#Dividing Other-Than-Perfect Fourths"&gt;Dividing Other-Than-Perfect Fourths&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:44 --&gt;&lt;!-- ws:start:WikiTextTocRule:45: --&gt; | &lt;a href="#Tetrachords And Non-Octave Scales"&gt;Tetrachords And Non-Octave Scales&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:45 --&gt;&lt;!-- ws:start:WikiTextTocRule:46: --&gt;
&lt;!-- ws:end:WikiTextTocRule:43 --&gt;&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:46 --&gt;&lt;hr /&gt;
&lt;hr /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Ancient Greek Genera"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Ancient Greek Genera&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Ancient Greek Genera"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Ancient Greek Genera&lt;/h1&gt;
Line 366: Line 368:
In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are &lt;a class="wiki_link" href="/superparticular"&gt;superparticular&lt;/a&gt;.&lt;br /&gt;
In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are &lt;a class="wiki_link" href="/superparticular"&gt;superparticular&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="Ajnas (tetrachords in middle-eastern music)"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Ajnas (tetrachords in middle-eastern music)&lt;/h1&gt;
&lt;br /&gt;
The concept of the tetrachord is extensively used in &lt;a class="wiki_link" href="/Arabic%2C%20Turkish%2C%20Persian"&gt;middle eastern&lt;/a&gt; music theory. The arabic word for tetrachord is &amp;quot;jins&amp;quot; (singular form) or &amp;quot;ajnas&amp;quot; (plural form).&lt;br /&gt;
See &lt;a class="wiki_link_ext" href="http://www.maqamworld.com/" rel="nofollow"&gt;http://www.maqamworld.com&lt;/a&gt; for details.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="Tetrachords Generalized"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Tetrachords Generalized&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc8"&gt;&lt;a name="Tetrachords Generalized"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Tetrachords Generalized&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
All tetrachords share the interval of a perfect fourth, but they vary in the other two intervals. Assuming a just fourth, we can name the two variable intervals &lt;em&gt;a&lt;/em&gt; &amp;amp; &lt;em&gt;b&lt;/em&gt;, &amp;amp; then write our generalized tetrachord like this:&lt;br /&gt;
All tetrachords share the interval of a perfect fourth, but they vary in the other two intervals. Assuming a just fourth, we can name the two variable intervals &lt;em&gt;a&lt;/em&gt; &amp;amp; &lt;em&gt;b&lt;/em&gt;, &amp;amp; then write our generalized tetrachord like this:&lt;br /&gt;
Line 391: Line 397:
[tetrachord #2], 9/8, [tetrachord #1]&lt;br /&gt;
[tetrachord #2], 9/8, [tetrachord #1]&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="Tetrachords Generalized-Modes of a [tetrachord], 9/8, [tetrachord] scale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Modes of a [tetrachord], 9/8, [tetrachord] scale&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="Tetrachords Generalized-Modes of a [tetrachord], 9/8, [tetrachord] scale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;Modes of a [tetrachord], 9/8, [tetrachord] scale&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;


Line 448: Line 454:
These three tetrachords are all rotations of each other (they contain the same steps in a different order).&lt;br /&gt;
These three tetrachords are all rotations of each other (they contain the same steps in a different order).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="Tetrachords Generalized-Tetrachord rotations"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;Tetrachord rotations&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc10"&gt;&lt;a name="Tetrachords Generalized-Tetrachord rotations"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;Tetrachord rotations&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
If you think of a tetrachord as three steps which total to a perfect fourth, then it makes sense that we can put those steps in any order. If we have a tetrachord with three step sizes, s, M, and L, then we have six rotations:&lt;br /&gt;
If you think of a tetrachord as three steps which total to a perfect fourth, then it makes sense that we can put those steps in any order. If we have a tetrachord with three step sizes, s, M, and L, then we have six rotations:&lt;br /&gt;
Line 460: Line 466:
And, if you have only one step size (as is the case in Porcupine temperament, for instance), you have an evenly-divided fourth, and only one possible rotation. (A tetrachord of this type can be found in &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt; - see &lt;a class="wiki_link" href="/22edo%20tetrachords"&gt;22edo tetrachords&lt;/a&gt;.)&lt;br /&gt;
And, if you have only one step size (as is the case in Porcupine temperament, for instance), you have an evenly-divided fourth, and only one possible rotation. (A tetrachord of this type can be found in &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt; - see &lt;a class="wiki_link" href="/22edo%20tetrachords"&gt;22edo tetrachords&lt;/a&gt;.)&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc10"&gt;&lt;a name="Tetrachords in equal temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;Tetrachords in equal temperaments&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc11"&gt;&lt;a name="Tetrachords in equal temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;Tetrachords in equal temperaments&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Naturally, any equally divided scale which contains an approximation of 4/3 will have its own family of tetrachords, starting with &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;, which has one tetrachord:&lt;br /&gt;
Naturally, any equally divided scale which contains an approximation of 4/3 will have its own family of tetrachords, starting with &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;, which has one tetrachord:&lt;br /&gt;
Line 490: Line 496:


&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc11"&gt;&lt;a name="Tetrachords in equal temperaments-Tetrachords of 10edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;Tetrachords of &lt;a class="wiki_link" href="/10edo"&gt;10edo&lt;/a&gt;&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc12"&gt;&lt;a name="Tetrachords in equal temperaments-Tetrachords of 10edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;Tetrachords of &lt;a class="wiki_link" href="/10edo"&gt;10edo&lt;/a&gt;&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Another example: 10edo has an interval that can function as a perfect fourth at 4 degrees, measuring 480 cents. It can thus be divided into any arrangement of two 1-degree steps and one 2-degree step:&lt;br /&gt;
Another example: 10edo has an interval that can function as a perfect fourth at 4 degrees, measuring 480 cents. It can thus be divided into any arrangement of two 1-degree steps and one 2-degree step:&lt;br /&gt;
Line 536: Line 542:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc12"&gt;&lt;a name="Dividing Other-Than-Perfect Fourths"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;Dividing Other-Than-Perfect Fourths&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc13"&gt;&lt;a name="Dividing Other-Than-Perfect Fourths"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;Dividing Other-Than-Perfect Fourths&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
A composer may choose to treat other-than-perfect fourths as material for constructing tetrachords. Some of the low-number equal temperaments contain diminished or augmented fourths, but nothing resembling a perfect fourth: &lt;a class="wiki_link" href="/6edo"&gt;6edo&lt;/a&gt;, &lt;a class="wiki_link" href="/8edo"&gt;8edo&lt;/a&gt;, &lt;a class="wiki_link" href="/9edo"&gt;9edo&lt;/a&gt;, &lt;a class="wiki_link" href="/11edo"&gt;11edo&lt;/a&gt;, &lt;a class="wiki_link" href="/13edo"&gt;13edo&lt;/a&gt;, &lt;a class="wiki_link" href="/16edo"&gt;16edo&lt;/a&gt;. Also, one may divide a just other-than-perfect fourth, such as 21/16, 43/32, 26/19, 11/8. At what point does the concept of &amp;quot;tetrachord&amp;quot; stop being useful?&lt;br /&gt;
A composer may choose to treat other-than-perfect fourths as material for constructing tetrachords. Some of the low-number equal temperaments contain diminished or augmented fourths, but nothing resembling a perfect fourth: &lt;a class="wiki_link" href="/6edo"&gt;6edo&lt;/a&gt;, &lt;a class="wiki_link" href="/8edo"&gt;8edo&lt;/a&gt;, &lt;a class="wiki_link" href="/9edo"&gt;9edo&lt;/a&gt;, &lt;a class="wiki_link" href="/11edo"&gt;11edo&lt;/a&gt;, &lt;a class="wiki_link" href="/13edo"&gt;13edo&lt;/a&gt;, &lt;a class="wiki_link" href="/16edo"&gt;16edo&lt;/a&gt;. Also, one may divide a just other-than-perfect fourth, such as 21/16, 43/32, 26/19, 11/8. At what point does the concept of &amp;quot;tetrachord&amp;quot; stop being useful?&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc13"&gt;&lt;a name="Tetrachords And Non-Octave Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;Tetrachords And Non-Octave Scales&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:28:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc14"&gt;&lt;a name="Tetrachords And Non-Octave Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:28 --&gt;Tetrachords And Non-Octave Scales&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
An example with &lt;a class="wiki_link" href="/Carlos%20Gamma"&gt;Carlos Gamma&lt;/a&gt;:&lt;br /&gt;
An example with &lt;a class="wiki_link" href="/Carlos%20Gamma"&gt;Carlos Gamma&lt;/a&gt;:&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.seraph.it/dep/det/GloriousGuitars.mp3" rel="nofollow"&gt;Glorious Guitars&lt;/a&gt; by &lt;a class="wiki_link" href="/Carlo%20Serafini"&gt;Carlo Serafini&lt;/a&gt; (&lt;a class="wiki_link_ext" href="http://www.seraph.it/blog_files/e8a36018d6b782c8ff7bc2416fa7ea5b-47.html" rel="nofollow"&gt;blog entry&lt;/a&gt;)&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;a class="wiki_link_ext" href="http://www.seraph.it/dep/det/GloriousGuitars.mp3" rel="nofollow"&gt;Glorious Guitars&lt;/a&gt; by &lt;a class="wiki_link" href="/Carlo%20Serafini"&gt;Carlo Serafini&lt;/a&gt; (&lt;a class="wiki_link_ext" href="http://www.seraph.it/blog_files/e8a36018d6b782c8ff7bc2416fa7ea5b-47.html" rel="nofollow"&gt;blog entry&lt;/a&gt;)&lt;/body&gt;&lt;/html&gt;</pre></div>