Tenney–Euclidean temperament measures: Difference between revisions

Wikispaces>mbattaglia1
**Imported revision 386803398 - Original comment: **
Wikispaces>mbattaglia1
**Imported revision 386803464 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-11-28 03:17:01 UTC</tt>.<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-11-28 03:17:36 UTC</tt>.<br>
: The original revision id was <tt>386803398</tt>.<br>
: The original revision id was <tt>386803464</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 17: Line 17:
[[math]]
[[math]]
\displaystyle
\displaystyle
||M|| = ||v_1 \wedge v_2 \wedge ... \wedge v_r|| = \sqrt{\frac{det([v_i \cdot v_j])}{C(n, r)}
||M|| = ||v_1 \wedge v_2 \wedge ... \wedge v_r|| = \sqrt{\frac{det([v_i \cdot v_j])}{C(n, r)}}
[[math]]
[[math]]


Line 46: Line 46:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
\displaystyle&amp;lt;br /&amp;gt;
\displaystyle&amp;lt;br /&amp;gt;
||M|| = ||v_1 \wedge v_2 \wedge ... \wedge v_r|| = \sqrt{\frac{det([v_i \cdot v_j])}{C(n, r)}&amp;lt;br/&amp;gt;[[math]]
||M|| = ||v_1 \wedge v_2 \wedge ... \wedge v_r|| = \sqrt{\frac{det([v_i \cdot v_j])}{C(n, r)}}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;\displaystyle
  --&gt;&lt;script type="math/tex"&gt;\displaystyle
||M|| = ||v_1 \wedge v_2 \wedge ... \wedge v_r|| = \sqrt{\frac{det([v_i \cdot v_j])}{C(n, r)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
||M|| = ||v_1 \wedge v_2 \wedge ... \wedge v_r|| = \sqrt{\frac{det([v_i \cdot v_j])}{C(n, r)}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
where C(n, r) is the number of combinations of n things taken r at a time, and vi.vj is the TE &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Symmetric_bilinear_form" rel="nofollow"&gt;symmetric form&lt;/a&gt; on vals, which in weighted coordinates is simply the ordinary dot product. Here n is the number of primes up to the prime limit p, and r is the rank of the temperament, which equals the number of vals wedged together to compute the wedgie.&lt;br /&gt;
where C(n, r) is the number of combinations of n things taken r at a time, and vi.vj is the TE &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Symmetric_bilinear_form" rel="nofollow"&gt;symmetric form&lt;/a&gt; on vals, which in weighted coordinates is simply the ordinary dot product. Here n is the number of primes up to the prime limit p, and r is the rank of the temperament, which equals the number of vals wedged together to compute the wedgie.&lt;br /&gt;