Tenney–Euclidean metrics: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 174914799 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 174915615 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-10-29 23:14:11 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-10-29 23:23:22 UTC</tt>.<br>
: The original revision id was <tt>174914799</tt>.<br>
: The original revision id was <tt>174915615</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 17: Line 17:
Instead of starting from a matrix of vals, we may start from a matrix of monzos. If B is a matrix with rows of monzos spanning the commas of a regular temperament, then M = BW^(-1) is the corresponding weighted matrix. Q = M`M is a projection matrix dual to P = I-Q, where I is the identity matrix, and P is the same symmetric matrix as in the previous section. If the rows define a basis for the commas of the temperament, and are therefor linearly independent, then P = I -  M*(MM*)^(-1)M = I - W^(-1)B*(BW^(-2)B*)^(-1)BW^(-1), and mPm* = bW^(-1)PW^(-1)b*, or b(W^(-2) - W^(-2)B*(BW^(-2)B*)^(-1)BW^(-2))b*, so that the terms inside the parenthesis define a formula for **P** in terms of the matrix of monzos B.
Instead of starting from a matrix of vals, we may start from a matrix of monzos. If B is a matrix with rows of monzos spanning the commas of a regular temperament, then M = BW^(-1) is the corresponding weighted matrix. Q = M`M is a projection matrix dual to P = I-Q, where I is the identity matrix, and P is the same symmetric matrix as in the previous section. If the rows define a basis for the commas of the temperament, and are therefor linearly independent, then P = I -  M*(MM*)^(-1)M = I - W^(-1)B*(BW^(-2)B*)^(-1)BW^(-1), and mPm* = bW^(-1)PW^(-1)b*, or b(W^(-2) - W^(-2)B*(BW^(-2)B*)^(-1)BW^(-2))b*, so that the terms inside the parenthesis define a formula for **P** in terms of the matrix of monzos B.


To define the OE, or octave equivalent seminorm, we simply add a row |1 0 0 ... 0&gt; representing 2 to the matrix B. Octaves are now projected to the origin as well as commas. We can as before form the quotient space with respect to the seminorm, and obtain a normed space in which octave-equivalent interval classes of the intervals of the temperament are the lattice points. The seminorm applied to monzos gives the OE complexity.</pre></div>
To define the OE, or octave equivalent seminorm, we simply add a row |1 0 0 ... 0&gt; representing 2 to the matrix B. An alternative proceedure is to find the [[normal lists|normal val list]], and remove the first val from the list, corresponding to the octave or some fraction thereof, and proceed as in the previous section on temperamental complexity.
 
Octaves are now projected to the origin as well as commas. We can as before form the quotient space with respect to the seminorm, and obtain a normed space in which octave-equivalent interval classes of the intervals of the temperament are the lattice points. The seminorm applied to monzos gives the OE complexity.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Tenney-Euclidean metrics&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-The weighting matrix"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;The weighting matrix&lt;/h2&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Tenney-Euclidean metrics&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-The weighting matrix"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;The weighting matrix&lt;/h2&gt;
Line 30: Line 32:
Instead of starting from a matrix of vals, we may start from a matrix of monzos. If B is a matrix with rows of monzos spanning the commas of a regular temperament, then M = BW^(-1) is the corresponding weighted matrix. Q = M`M is a projection matrix dual to P = I-Q, where I is the identity matrix, and P is the same symmetric matrix as in the previous section. If the rows define a basis for the commas of the temperament, and are therefor linearly independent, then P = I -  M*(MM*)^(-1)M = I - W^(-1)B*(BW^(-2)B*)^(-1)BW^(-1), and mPm* = bW^(-1)PW^(-1)b*, or b(W^(-2) - W^(-2)B*(BW^(-2)B*)^(-1)BW^(-2))b*, so that the terms inside the parenthesis define a formula for &lt;strong&gt;P&lt;/strong&gt; in terms of the matrix of monzos B.&lt;br /&gt;
Instead of starting from a matrix of vals, we may start from a matrix of monzos. If B is a matrix with rows of monzos spanning the commas of a regular temperament, then M = BW^(-1) is the corresponding weighted matrix. Q = M`M is a projection matrix dual to P = I-Q, where I is the identity matrix, and P is the same symmetric matrix as in the previous section. If the rows define a basis for the commas of the temperament, and are therefor linearly independent, then P = I -  M*(MM*)^(-1)M = I - W^(-1)B*(BW^(-2)B*)^(-1)BW^(-1), and mPm* = bW^(-1)PW^(-1)b*, or b(W^(-2) - W^(-2)B*(BW^(-2)B*)^(-1)BW^(-2))b*, so that the terms inside the parenthesis define a formula for &lt;strong&gt;P&lt;/strong&gt; in terms of the matrix of monzos B.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
To define the OE, or octave equivalent seminorm, we simply add a row |1 0 0 ... 0&amp;gt; representing 2 to the matrix B. Octaves are now projected to the origin as well as commas. We can as before form the quotient space with respect to the seminorm, and obtain a normed space in which octave-equivalent interval classes of the intervals of the temperament are the lattice points. The seminorm applied to monzos gives the OE complexity.&lt;/body&gt;&lt;/html&gt;</pre></div>
To define the OE, or octave equivalent seminorm, we simply add a row |1 0 0 ... 0&amp;gt; representing 2 to the matrix B. An alternative proceedure is to find the &lt;a class="wiki_link" href="/normal%20lists"&gt;normal val list&lt;/a&gt;, and remove the first val from the list, corresponding to the octave or some fraction thereof, and proceed as in the previous section on temperamental complexity.&lt;br /&gt;
&lt;br /&gt;
Octaves are now projected to the origin as well as commas. We can as before form the quotient space with respect to the seminorm, and obtain a normed space in which octave-equivalent interval classes of the intervals of the temperament are the lattice points. The seminorm applied to monzos gives the OE complexity.&lt;/body&gt;&lt;/html&gt;</pre></div>