Tenney–Euclidean metrics: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 209349086 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 209349882 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-03-10 14:58:49 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-03-10 15:00:15 UTC</tt>.<br>
: The original revision id was <tt>209349086</tt>.<br>
: The original revision id was <tt>209349882</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 20: Line 20:
Instead of starting from a matrix of vals, we may start from a matrix of monzos. If B is a matrix with rows of monzos spanning the commas of a regular temperament, then M = BW^(-1) is the corresponding weighted matrix. Q = M`M is a projection matrix dual to P = I-Q, where I is the identity matrix, and P is the same symmetric matrix as in the previous section. If the rows define a basis for the commas of the temperament, and are therefor linearly independent, then P = I - M*(MM*)^(-1)M = I - W^(-1)B*(BW^(-2)B*)^(-1)BW^(-1), and mPm* = bW^(-1)PW^(-1)b*, or b(W^(-2) - W^(-2)B*(BW^(-2)B*)^(-1)BW^(-2))b*, so that the terms inside the parenthesis define a formula for **P** in terms of the matrix of monzos B.
Instead of starting from a matrix of vals, we may start from a matrix of monzos. If B is a matrix with rows of monzos spanning the commas of a regular temperament, then M = BW^(-1) is the corresponding weighted matrix. Q = M`M is a projection matrix dual to P = I-Q, where I is the identity matrix, and P is the same symmetric matrix as in the previous section. If the rows define a basis for the commas of the temperament, and are therefor linearly independent, then P = I - M*(MM*)^(-1)M = I - W^(-1)B*(BW^(-2)B*)^(-1)BW^(-1), and mPm* = bW^(-1)PW^(-1)b*, or b(W^(-2) - W^(-2)B*(BW^(-2)B*)^(-1)BW^(-2))b*, so that the terms inside the parenthesis define a formula for **P** in terms of the matrix of monzos B.


To define the OETES, or Tenney-Euclidean octave equivalent seminorm, we simply add a row |1 0 0 ... 0&gt; representing 2 to the matrix B. An alternative proceedure is to find the [[normal lists|normal val list]], and remove the first val from the list, corresponding to the octave or some fraction thereof, and proceed as in the previous section on temperamental complexity. This seminorm is a measure of the octave-equivalent complexity of a given p-limit rational interval in terms of thenp-limit regular temperament given by A.
To define the OETES, or Tenney-Euclidean octave equivalent seminorm, we simply add a row |1 0 0 ... 0&gt; representing 2 to the matrix B. An alternative proceedure is to find the [[normal lists|normal val list]], and remove the first val from the list, corresponding to the octave or some fraction thereof, and proceed as in the previous section on temperamental complexity. This seminorm is a measure of the octave-equivalent complexity of a given p-limit rational interval in terms of the p-limit regular temperament given by A.


=Logflat TE badness=
=Logflat TE badness=
Given a matrix A whose rows are linearly independent vals defining a regular temperament, then the rank r of the temperament is the number of rows, which equals the number of linearly independent vals. The dimension of the temperament is the number of primes it covers; if p is the largest such prime, then the dimension d is pi(p), the number of primes to p. If we define S(A) to be the simple badness (relative error) of A, and C(A) to be the complexity of A, then //logflat badness// is defined by the formula S(A) C(A)^(r/(d-r)). If we set a cutoff margin for logflat badness, there are still infinite numbers of new temperaments appearing as complexity goes up, at a lower rate which is approximately logarithmic in terms of complexity.
Given a matrix A whose rows are linearly independent vals defining a regular temperament, then the rank r of the temperament is the number of rows, which equals the number of linearly independent vals. The dimension of the temperament is the number of primes it covers; if p is the largest such prime, then the dimension d is pi(p), the number of primes to p. If we define S(A) to be the simple badness (relative error) of A, and C(A) to be the complexity of A, then //logflat badness// is defined by the formula S(A) C(A)^(r/(d-r)). If we set a cutoff margin for logflat badness, there are still infinite numbers of new temperaments appearing as complexity goes up, at a lower rate which is approximately logarithmic in terms of complexity.


==Examples==
=Examples=
Consider the temperament defined by the 5-limit [[Patent val|patent vals]] for 15 and 22 equal. From the vals, we may contruct a 2x3 matrix A = [&lt;15 24 35|, &lt;22 35 51|]. From this we may obtain the matrix **P** as A*(AW^2A*)^(-1)A, approximately  
Consider the temperament defined by the 5-limit [[Patent val|patent vals]] for 15 and 22 equal. From the vals, we may contruct a 2x3 matrix A = [&lt;15 24 35|, &lt;22 35 51|]. From this we may obtain the matrix **P** as A*(AW^2A*)^(-1)A, approximately  


Line 53: Line 53:
</pre></div>
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Tenney-Euclidean metrics&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:10:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt;&lt;a href="#The weighting matrix"&gt;The weighting matrix&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#Temperamental complexity"&gt;Temperamental complexity&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt; | &lt;a href="#The OETES"&gt;The OETES&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#Logflat TE badness"&gt;Logflat TE badness&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Tenney-Euclidean metrics&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:10:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt;&lt;a href="#The weighting matrix"&gt;The weighting matrix&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#Temperamental complexity"&gt;Temperamental complexity&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt; | &lt;a href="#The OETES"&gt;The OETES&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#Logflat TE badness"&gt;Logflat TE badness&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#Examples"&gt;Examples&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt;
&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="The weighting matrix"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;The weighting matrix&lt;/h1&gt;
&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="The weighting matrix"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;The weighting matrix&lt;/h1&gt;
  Let us define the val weighting matrix W to be the diagonal matrix with values 1, 1/log2(3), 1/log2(5) ... 1/log2(p) along the diagonal. Given a val &amp;quot;a&amp;quot; expressed as a row vector, the corresponding vector in weighted coordinates is aW, with transpose Wa* where the * denotes the transpose. Then the dot product of weighted vals is aW^2a*, which makes the Euclidean metric on vals, a measure of complexity, to be || &amp;lt;a2 a3 ... ap| || = sqrt(a2^2 + a3^2/log2(3)^2 + ... + ap^2/log2(p)^2). Similarly, if b is a monzo, then in weighted coordinates the monzo becomes bW^(-1), and the dot product is bW^(-2)b*, leading to sqrt(b2^2 + log2(3)^2b3^2 + ... + log2(p)^2bp^2) as the norm on monzos, a measure of complexity we may call the Tenney-Euclidean, or TE, complexity.&lt;br /&gt;
  Let us define the val weighting matrix W to be the diagonal matrix with values 1, 1/log2(3), 1/log2(5) ... 1/log2(p) along the diagonal. Given a val &amp;quot;a&amp;quot; expressed as a row vector, the corresponding vector in weighted coordinates is aW, with transpose Wa* where the * denotes the transpose. Then the dot product of weighted vals is aW^2a*, which makes the Euclidean metric on vals, a measure of complexity, to be || &amp;lt;a2 a3 ... ap| || = sqrt(a2^2 + a3^2/log2(3)^2 + ... + ap^2/log2(p)^2). Similarly, if b is a monzo, then in weighted coordinates the monzo becomes bW^(-1), and the dot product is bW^(-2)b*, leading to sqrt(b2^2 + log2(3)^2b3^2 + ... + log2(p)^2bp^2) as the norm on monzos, a measure of complexity we may call the Tenney-Euclidean, or TE, complexity.&lt;br /&gt;
Line 67: Line 67:
  Instead of starting from a matrix of vals, we may start from a matrix of monzos. If B is a matrix with rows of monzos spanning the commas of a regular temperament, then M = BW^(-1) is the corresponding weighted matrix. Q = M`M is a projection matrix dual to P = I-Q, where I is the identity matrix, and P is the same symmetric matrix as in the previous section. If the rows define a basis for the commas of the temperament, and are therefor linearly independent, then P = I - M*(MM*)^(-1)M = I - W^(-1)B*(BW^(-2)B*)^(-1)BW^(-1), and mPm* = bW^(-1)PW^(-1)b*, or b(W^(-2) - W^(-2)B*(BW^(-2)B*)^(-1)BW^(-2))b*, so that the terms inside the parenthesis define a formula for &lt;strong&gt;P&lt;/strong&gt; in terms of the matrix of monzos B.&lt;br /&gt;
  Instead of starting from a matrix of vals, we may start from a matrix of monzos. If B is a matrix with rows of monzos spanning the commas of a regular temperament, then M = BW^(-1) is the corresponding weighted matrix. Q = M`M is a projection matrix dual to P = I-Q, where I is the identity matrix, and P is the same symmetric matrix as in the previous section. If the rows define a basis for the commas of the temperament, and are therefor linearly independent, then P = I - M*(MM*)^(-1)M = I - W^(-1)B*(BW^(-2)B*)^(-1)BW^(-1), and mPm* = bW^(-1)PW^(-1)b*, or b(W^(-2) - W^(-2)B*(BW^(-2)B*)^(-1)BW^(-2))b*, so that the terms inside the parenthesis define a formula for &lt;strong&gt;P&lt;/strong&gt; in terms of the matrix of monzos B.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
To define the OETES, or Tenney-Euclidean octave equivalent seminorm, we simply add a row |1 0 0 ... 0&amp;gt; representing 2 to the matrix B. An alternative proceedure is to find the &lt;a class="wiki_link" href="/normal%20lists"&gt;normal val list&lt;/a&gt;, and remove the first val from the list, corresponding to the octave or some fraction thereof, and proceed as in the previous section on temperamental complexity. This seminorm is a measure of the octave-equivalent complexity of a given p-limit rational interval in terms of thenp-limit regular temperament given by A.&lt;br /&gt;
To define the OETES, or Tenney-Euclidean octave equivalent seminorm, we simply add a row |1 0 0 ... 0&amp;gt; representing 2 to the matrix B. An alternative proceedure is to find the &lt;a class="wiki_link" href="/normal%20lists"&gt;normal val list&lt;/a&gt;, and remove the first val from the list, corresponding to the octave or some fraction thereof, and proceed as in the previous section on temperamental complexity. This seminorm is a measure of the octave-equivalent complexity of a given p-limit rational interval in terms of the p-limit regular temperament given by A.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Logflat TE badness"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Logflat TE badness&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Logflat TE badness"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Logflat TE badness&lt;/h1&gt;
Given a matrix A whose rows are linearly independent vals defining a regular temperament, then the rank r of the temperament is the number of rows, which equals the number of linearly independent vals. The dimension of the temperament is the number of primes it covers; if p is the largest such prime, then the dimension d is pi(p), the number of primes to p. If we define S(A) to be the simple badness (relative error) of A, and C(A) to be the complexity of A, then &lt;em&gt;logflat badness&lt;/em&gt; is defined by the formula S(A) C(A)^(r/(d-r)). If we set a cutoff margin for logflat badness, there are still infinite numbers of new temperaments appearing as complexity goes up, at a lower rate which is approximately logarithmic in terms of complexity.&lt;br /&gt;
Given a matrix A whose rows are linearly independent vals defining a regular temperament, then the rank r of the temperament is the number of rows, which equals the number of linearly independent vals. The dimension of the temperament is the number of primes it covers; if p is the largest such prime, then the dimension d is pi(p), the number of primes to p. If we define S(A) to be the simple badness (relative error) of A, and C(A) to be the complexity of A, then &lt;em&gt;logflat badness&lt;/em&gt; is defined by the formula S(A) C(A)^(r/(d-r)). If we set a cutoff margin for logflat badness, there are still infinite numbers of new temperaments appearing as complexity goes up, at a lower rate which is approximately logarithmic in terms of complexity.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Logflat TE badness-Examples"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Examples&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Examples"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Examples&lt;/h1&gt;
Consider the temperament defined by the 5-limit &lt;a class="wiki_link" href="/Patent%20val"&gt;patent vals&lt;/a&gt; for 15 and 22 equal. From the vals, we may contruct a 2x3 matrix A = [&amp;lt;15 24 35|, &amp;lt;22 35 51|]. From this we may obtain the matrix &lt;strong&gt;P&lt;/strong&gt; as A*(AW^2A*)^(-1)A, approximately &lt;br /&gt;
Consider the temperament defined by the 5-limit &lt;a class="wiki_link" href="/Patent%20val"&gt;patent vals&lt;/a&gt; for 15 and 22 equal. From the vals, we may contruct a 2x3 matrix A = [&amp;lt;15 24 35|, &amp;lt;22 35 51|]. From this we may obtain the matrix &lt;strong&gt;P&lt;/strong&gt; as A*(AW^2A*)^(-1)A, approximately &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;