Tenney–Euclidean metrics: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 472497864 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 479873268 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-11-26 14:34:40 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-12-30 11:06:34 UTC</tt>.<br>
: The original revision id was <tt>472497864</tt>.<br>
: The original revision id was <tt>479873268</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 20: Line 20:
Instead of starting from a matrix of vals, we may start from a matrix of monzos. If B is a matrix with rows of monzos spanning the commas of a regular temperament, then M = BW^(-1) is the corresponding weighted matrix. Q = M`M is a projection matrix dual to P = I-Q, where I is the identity matrix, and P is the same symmetric matrix as in the previous section. If the rows define a basis for the commas of the temperament, and are therefor linearly independent, then P = I - M*(MM*)^(-1)M = I - W^(-1)B*(BW^(-2)B*)^(-1)BW^(-1), and mPm* = bW^(-1)PW^(-1)b*, or b(W^(-2) - W^(-2)B*(BW^(-2)B*)^(-1)BW^(-2))b*, so that the terms inside the parenthesis define a formula for **P** in terms of the matrix of monzos B.
Instead of starting from a matrix of vals, we may start from a matrix of monzos. If B is a matrix with rows of monzos spanning the commas of a regular temperament, then M = BW^(-1) is the corresponding weighted matrix. Q = M`M is a projection matrix dual to P = I-Q, where I is the identity matrix, and P is the same symmetric matrix as in the previous section. If the rows define a basis for the commas of the temperament, and are therefor linearly independent, then P = I - M*(MM*)^(-1)M = I - W^(-1)B*(BW^(-2)B*)^(-1)BW^(-1), and mPm* = bW^(-1)PW^(-1)b*, or b(W^(-2) - W^(-2)B*(BW^(-2)B*)^(-1)BW^(-2))b*, so that the terms inside the parenthesis define a formula for **P** in terms of the matrix of monzos B.


To define the OETES, or Tenney-Euclidean octave equivalent seminorm, we simply add a row |1 0 0 ... 0&gt; representing 2 to the matrix B. An alternative proceedure is to find the [[normal lists|normal val list]], and remove the first val from the list, corresponding to the octave or some fraction thereof, and proceed as in the previous section on temperamental complexity. This seminorm is a measure of the octave-equivalent complexity of a given p-limit rational interval in terms of the p-limit regular temperament given by A.
To define the OETES, or octave equivalent Tenney-Euclidean seminorm, we simply add a row |1 0 0 ... 0&gt; representing 2 to the matrix B. An alternative proceedure is to find the [[normal lists|normal val list]], and remove the first val from the list, corresponding to the octave or some fraction thereof, and proceed as in the previous section on temperamental complexity. This seminorm is a measure of the octave-equivalent complexity of a given p-limit rational interval in terms of the p-limit regular temperament given by A.


=Logflat TE badness=  
=Logflat TE badness=  
Line 66: Line 66:
  Instead of starting from a matrix of vals, we may start from a matrix of monzos. If B is a matrix with rows of monzos spanning the commas of a regular temperament, then M = BW^(-1) is the corresponding weighted matrix. Q = M`M is a projection matrix dual to P = I-Q, where I is the identity matrix, and P is the same symmetric matrix as in the previous section. If the rows define a basis for the commas of the temperament, and are therefor linearly independent, then P = I - M*(MM*)^(-1)M = I - W^(-1)B*(BW^(-2)B*)^(-1)BW^(-1), and mPm* = bW^(-1)PW^(-1)b*, or b(W^(-2) - W^(-2)B*(BW^(-2)B*)^(-1)BW^(-2))b*, so that the terms inside the parenthesis define a formula for &lt;strong&gt;P&lt;/strong&gt; in terms of the matrix of monzos B.&lt;br /&gt;
  Instead of starting from a matrix of vals, we may start from a matrix of monzos. If B is a matrix with rows of monzos spanning the commas of a regular temperament, then M = BW^(-1) is the corresponding weighted matrix. Q = M`M is a projection matrix dual to P = I-Q, where I is the identity matrix, and P is the same symmetric matrix as in the previous section. If the rows define a basis for the commas of the temperament, and are therefor linearly independent, then P = I - M*(MM*)^(-1)M = I - W^(-1)B*(BW^(-2)B*)^(-1)BW^(-1), and mPm* = bW^(-1)PW^(-1)b*, or b(W^(-2) - W^(-2)B*(BW^(-2)B*)^(-1)BW^(-2))b*, so that the terms inside the parenthesis define a formula for &lt;strong&gt;P&lt;/strong&gt; in terms of the matrix of monzos B.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
To define the OETES, or Tenney-Euclidean octave equivalent seminorm, we simply add a row |1 0 0 ... 0&amp;gt; representing 2 to the matrix B. An alternative proceedure is to find the &lt;a class="wiki_link" href="/normal%20lists"&gt;normal val list&lt;/a&gt;, and remove the first val from the list, corresponding to the octave or some fraction thereof, and proceed as in the previous section on temperamental complexity. This seminorm is a measure of the octave-equivalent complexity of a given p-limit rational interval in terms of the p-limit regular temperament given by A.&lt;br /&gt;
To define the OETES, or octave equivalent Tenney-Euclidean seminorm, we simply add a row |1 0 0 ... 0&amp;gt; representing 2 to the matrix B. An alternative proceedure is to find the &lt;a class="wiki_link" href="/normal%20lists"&gt;normal val list&lt;/a&gt;, and remove the first val from the list, corresponding to the octave or some fraction thereof, and proceed as in the previous section on temperamental complexity. This seminorm is a measure of the octave-equivalent complexity of a given p-limit rational interval in terms of the p-limit regular temperament given by A.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Logflat TE badness"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Logflat TE badness&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Logflat TE badness"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Logflat TE badness&lt;/h1&gt;