Tenney–Euclidean metrics: Difference between revisions
Wikispaces>genewardsmith **Imported revision 479873268 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 509656470 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt> | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2014-05-18 14:07:30 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>509656470</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]] | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]] | ||
[[image:mathhazard.jpg align="center"]] | |||
=The weighting matrix= | =The weighting matrix= | ||
Let us define the val weighting matrix W to be the diagonal matrix with values 1, 1/log2(3), 1/log2(5) ... 1/log2(p) along the diagonal. Given a val "a" expressed as a row vector, the corresponding vector in weighted coordinates is aW, with transpose Wa* where the * denotes the transpose. Then the dot product of weighted vals is aW^2a*, which makes the Euclidean metric on vals, a measure of complexity, to be || <a2 a3 ... ap| ||_2 = sqrt(a2^2 + a3^2/log2(3)^2 + ... + ap^2/log2(p)^2); dividing this by sqrt(n), where n = π(p) is the number of primes to p gives the Tenney-Euclidean, or TE, norm. Similarly, if b is a monzo, then in weighted coordinates the monzo becomes bW^(-1), and the dot product is bW^(-2)b*, leading to sqrt(b2^2 + log2(3)^2b3^2 + ... + log2(p)^2bp^2); multiplying this by sqrt(n) gives the dual RMS norm on monzos, a measure of complexity we may call the Tenney-Euclidean, or TE, complexity. | Let us define the val weighting matrix W to be the diagonal matrix with values 1, 1/log2(3), 1/log2(5) ... 1/log2(p) along the diagonal. Given a val "a" expressed as a row vector, the corresponding vector in weighted coordinates is aW, with transpose Wa* where the * denotes the transpose. Then the dot product of weighted vals is aW^2a*, which makes the Euclidean metric on vals, a measure of complexity, to be || <a2 a3 ... ap| ||_2 = sqrt(a2^2 + a3^2/log2(3)^2 + ... + ap^2/log2(p)^2); dividing this by sqrt(n), where n = π(p) is the number of primes to p gives the Tenney-Euclidean, or TE, norm. Similarly, if b is a monzo, then in weighted coordinates the monzo becomes bW^(-1), and the dot product is bW^(-2)b*, leading to sqrt(b2^2 + log2(3)^2b3^2 + ... + log2(p)^2bp^2); multiplying this by sqrt(n) gives the dual RMS norm on monzos, a measure of complexity we may call the Tenney-Euclidean, or TE, complexity. | ||
Line 53: | Line 55: | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Tenney-Euclidean metrics</title></head><body><!-- ws:start:WikiTextTocRule:10:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:10 --><!-- ws:start:WikiTextTocRule:11: --><a href="#The weighting matrix">The weighting matrix</a><!-- ws:end:WikiTextTocRule:11 --><!-- ws:start:WikiTextTocRule:12: --> | <a href="#Temperamental complexity">Temperamental complexity</a><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --> | <a href="#The OETES">The OETES</a><!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextTocRule:14: --> | <a href="#Logflat TE badness">Logflat TE badness</a><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --> | <a href="#Examples">Examples</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: --> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Tenney-Euclidean metrics</title></head><body><!-- ws:start:WikiTextTocRule:10:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:10 --><!-- ws:start:WikiTextTocRule:11: --><a href="#The weighting matrix">The weighting matrix</a><!-- ws:end:WikiTextTocRule:11 --><!-- ws:start:WikiTextTocRule:12: --> | <a href="#Temperamental complexity">Temperamental complexity</a><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --> | <a href="#The OETES">The OETES</a><!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextTocRule:14: --> | <a href="#Logflat TE badness">Logflat TE badness</a><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --> | <a href="#Examples">Examples</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: --> | ||
<!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="The weighting matrix"></a><!-- ws:end:WikiTextHeadingRule:0 -->The weighting matrix</h1> | <!-- ws:end:WikiTextTocRule:16 --><br /> | ||
<!-- ws:start:WikiTextLocalImageRule:17:&lt;div style=&quot;text-align: center&quot;&gt;&lt;img src=&quot;/file/view/mathhazard.jpg&quot; alt=&quot;&quot; title=&quot;&quot; /&gt;&lt;/div&gt; --><div style="text-align: center"><img src="/file/view/mathhazard.jpg" alt="mathhazard.jpg" title="mathhazard.jpg" /></div><!-- ws:end:WikiTextLocalImageRule:17 --><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="The weighting matrix"></a><!-- ws:end:WikiTextHeadingRule:0 -->The weighting matrix</h1> | |||
Let us define the val weighting matrix W to be the diagonal matrix with values 1, 1/log2(3), 1/log2(5) ... 1/log2(p) along the diagonal. Given a val &quot;a&quot; expressed as a row vector, the corresponding vector in weighted coordinates is aW, with transpose Wa* where the * denotes the transpose. Then the dot product of weighted vals is aW^2a*, which makes the Euclidean metric on vals, a measure of complexity, to be || &lt;a2 a3 ... ap| ||_2 = sqrt(a2^2 + a3^2/log2(3)^2 + ... + ap^2/log2(p)^2); dividing this by sqrt(n), where n = π(p) is the number of primes to p gives the Tenney-Euclidean, or TE, norm. Similarly, if b is a monzo, then in weighted coordinates the monzo becomes bW^(-1), and the dot product is bW^(-2)b*, leading to sqrt(b2^2 + log2(3)^2b3^2 + ... + log2(p)^2bp^2); multiplying this by sqrt(n) gives the dual RMS norm on monzos, a measure of complexity we may call the Tenney-Euclidean, or TE, complexity.<br /> | Let us define the val weighting matrix W to be the diagonal matrix with values 1, 1/log2(3), 1/log2(5) ... 1/log2(p) along the diagonal. Given a val &quot;a&quot; expressed as a row vector, the corresponding vector in weighted coordinates is aW, with transpose Wa* where the * denotes the transpose. Then the dot product of weighted vals is aW^2a*, which makes the Euclidean metric on vals, a measure of complexity, to be || &lt;a2 a3 ... ap| ||_2 = sqrt(a2^2 + a3^2/log2(3)^2 + ... + ap^2/log2(p)^2); dividing this by sqrt(n), where n = π(p) is the number of primes to p gives the Tenney-Euclidean, or TE, norm. Similarly, if b is a monzo, then in weighted coordinates the monzo becomes bW^(-1), and the dot product is bW^(-2)b*, leading to sqrt(b2^2 + log2(3)^2b3^2 + ... + log2(p)^2bp^2); multiplying this by sqrt(n) gives the dual RMS norm on monzos, a measure of complexity we may call the Tenney-Euclidean, or TE, complexity.<br /> | ||
<br /> | <br /> |