Tablet: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 254444868 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 254455600 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-15 14:00:42 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-15 14:25:46 UTC</tt>.<br>
: The original revision id was <tt>254444868</tt>.<br>
: The original revision id was <tt>254455600</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 23: Line 23:


* If u mod 4 = 0, then  
* If u mod 4 = 0, then  
note(t) = |u/4 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&gt;
note(t) = |u/4 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&gt;
* If u mod 4 = 1, then  
* If u mod 4 = 1, then  
note(t) = |(u-9)/4 (-a+b+c)/2 (a-b+c)/2 1+(a+b-c)/2&gt;
note(t) = |(u-9)/4 (-a+b+c)/2 (a-b+c)/2 1+(a+b-c)/2&gt;
* If u mod 4 = 2, then  
* If u mod 4 = 2, then  
note(t) = |(u-6)/4 (-a+b+c)/2 1+(a-b+c)/2 (a+b-c)/2&gt;
note(t) = |(u-6)/4 (-a+b+c)/2 1+(a-b+c)/2 (a+b-c)/2&gt;
* If u mod 4 = 3, then  
* If u mod 4 = 3, then  
note(t) = |(u-11)/4 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&gt;
note(t) = |(u-11)/4 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&gt;


If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t. If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w)] is a 7-limit tetrad.
If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t. If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w)] is a 7-limit tetrad.
Line 38: Line 38:


* If u mod 5 = 0, then  
* If u mod 5 = 0, then  
note(t) = |u/5 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&gt;
note(t) = |u/5 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&gt;
* If u mod 5 = 1, then  
* If u mod 5 = 1, then  
note(t) = |(u-16)/5 2+(-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&gt;
note(t) = |(u-16)/5 2+(-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&gt;
* If u mod 5 = 2, then  
* If u mod 5 = 2, then  
note(t) = |(u-12)/5 (-a+b+c)/2 1+(a-b+c)/2 (a+b-c)/2&gt;
note(t) = |(u-12)/5 (-a+b+c)/2 1+(a-b+c)/2 (a+b-c)/2&gt;
* If u mod 5 = 3, then  
* If u mod 5 = 3, then  
note(t) = |(u-8)/5 1+(-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&gt;
note(t) = |(u-8)/5 1+(-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&gt;
* If u mod 5 = 4, then  
* If u mod 5 = 4, then  
note(t) = |(u-14)/5 (-a+b+c)/2 (a-b+c)/2 1+(a+b-c)/2&gt;
note(t) = |(u-14)/5 (-a+b+c)/2 (a-b+c)/2 1+(a+b-c)/2&gt;


Once again, if a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w), note(n+4), w)] is a complete 9-odd-limit quintad.
Once again, if a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w), note(n+4), w)] is a complete 9-odd-limit quintad.
Line 69: Line 69:
If t = [n, [a b c]] is a tablet, define u = n - 7a - 4b - 2c. If a+b+c is even, then&lt;br /&gt;
If t = [n, [a b c]] is a tablet, define u = n - 7a - 4b - 2c. If a+b+c is even, then&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 0, then&lt;/li&gt;&lt;/ul&gt;note(t) = |u/4 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 0, then&lt;/li&gt;&lt;/ul&gt;note(t) = |u/4 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 1, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-9)/4 (-a+b+c)/2 (a-b+c)/2 1+(a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 1, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-9)/4 (-a+b+c)/2 (a-b+c)/2 1+(a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 2, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-6)/4 (-a+b+c)/2 1+(a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 2, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-6)/4 (-a+b+c)/2 1+(a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 3, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-11)/4 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 3, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-11)/4 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t. If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w)] is a 7-limit tetrad.&lt;br /&gt;
If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t. If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w)] is a 7-limit tetrad.&lt;br /&gt;
Line 80: Line 80:
If we define u = n - 9a - 5b - 3c then supposing a+b+c is even,&lt;br /&gt;
If we define u = n - 9a - 5b - 3c then supposing a+b+c is even,&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 0, then&lt;/li&gt;&lt;/ul&gt;note(t) = |u/5 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 0, then&lt;/li&gt;&lt;/ul&gt;note(t) = |u/5 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 1, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-16)/5 2+(-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 1, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-16)/5 2+(-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 2, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-12)/5 (-a+b+c)/2 1+(a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 2, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-12)/5 (-a+b+c)/2 1+(a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 3, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-8)/5 1+(-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 3, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-8)/5 1+(-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 4, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-14)/5 (-a+b+c)/2 (a-b+c)/2 1+(a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 4, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-14)/5 (-a+b+c)/2 (a-b+c)/2 1+(a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Once again, if a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w), note(n+4), w)] is a complete 9-odd-limit quintad.&lt;br /&gt;
Once again, if a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w), note(n+4), w)] is a complete 9-odd-limit quintad.&lt;br /&gt;