Tablet: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 254460694 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 254465024 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-15 14:37:42 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-15 14:47:39 UTC</tt>.<br>
: The original revision id was <tt>254460694</tt>.<br>
: The original revision id was <tt>254465024</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 25: Line 25:
note(t) = |u/4  (-a+b+c)/2  (a-b+c)/2  (a+b-c)/2&gt;
note(t) = |u/4  (-a+b+c)/2  (a-b+c)/2  (a+b-c)/2&gt;
* If u mod 4 = 1, then  
* If u mod 4 = 1, then  
note(t) = |(u-9)/4  (-a+b+c)/2  (a-b+c)/2  1+(a+b-c)/2&gt;
note(t) = |(u-9)/4  (-a+b+c)/2  1+(a-b+c)/2  (a+b-c)/2&gt;
* If u mod 4 = 2, then  
* If u mod 4 = 2, then  
note(t) = |(u-6)/4  (-a+b+c)/2  1+(a-b+c)/2  (a+b-c)/2&gt;
note(t) = |(u-6)/4  1+(-a+b+c)/2  (a-b+c)/2  (a+b-c)/2&gt;
* If u mod 4 = 3, then  
* If u mod 4 = 3, then  
note(t) = |(u-11)/4  (-a+b+c)/2  (a-b+c)/2  (a+b-c)/2&gt;
note(t) = |(u-11)/4  (-a+b+c)/2  (a-b+c)/2  1+(a+b-c)/2&gt;


If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t. If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w)] is a 7-limit tetrad.
If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t. If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w)] is a 7-limit tetrad.
Line 70: Line 70:
&lt;br /&gt;
&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 0, then&lt;/li&gt;&lt;/ul&gt;note(t) = |u/4  (-a+b+c)/2  (a-b+c)/2  (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 0, then&lt;/li&gt;&lt;/ul&gt;note(t) = |u/4  (-a+b+c)/2  (a-b+c)/2  (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 1, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-9)/4  (-a+b+c)/2  (a-b+c)/2  1+(a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 1, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-9)/4  (-a+b+c)/2  1+(a-b+c)/2  (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 2, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-6)/4  (-a+b+c)/2  1+(a-b+c)/2  (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 2, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-6)/4  1+(-a+b+c)/2  (a-b+c)/2  (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 3, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-11)/4  (-a+b+c)/2  (a-b+c)/2  (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 3, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-11)/4  (-a+b+c)/2  (a-b+c)/2  1+(a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t. If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w)] is a 7-limit tetrad.&lt;br /&gt;
If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t. If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w)] is a 7-limit tetrad.&lt;br /&gt;