Tablet: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 256942682 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 256942984 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-22 07:26:04 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-22 07:27:55 UTC</tt>.<br>
: The original revision id was <tt>256942682</tt>.<br>
: The original revision id was <tt>256942984</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 38: Line 38:
note(n, [r e3 e5]) = |(u-5)/3 e3+1 e5&gt;
note(n, [r e3 e5]) = |(u-5)/3 e3+1 e5&gt;


Then if c is a tablet, note(n, c) gives the note belonging to the triad denoted by c, satisfying &lt;3 5 7|note(n, c)&gt; = n.
Then if c is a tablet, note(n, c) gives the note belonging to the triad denoted by c, satisfying &lt;3 5 7|note(n, c) = n.


=The 7-limit 4et tablet=
=The 7-limit 4et tablet=
Line 54: Line 54:
note(t) = |(u-11)/4  (-a+b+c)/2  (a-b+c)/2  1+(a+b-c)/2&gt;
note(t) = |(u-11)/4  (-a+b+c)/2  (a-b+c)/2  1+(a+b-c)/2&gt;


If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t. If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w)] is a 7-limit tetrad, and &lt;4 6 9 11|note(n, t)| = n.
If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t. If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w)] is a 7-limit tetrad, and &lt;4 6 9 11|note(n, t) = n.


=The 7-limit 5et tablet=
=The 7-limit 5et tablet=
Line 71: Line 71:
note(t) = |(u-14)/5  (-a+b+c)/2  (a-b+c)/2  1+(a+b-c)/2&gt;
note(t) = |(u-14)/5  (-a+b+c)/2  (a-b+c)/2  1+(a+b-c)/2&gt;


Once again, if a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w), note(n+4), w)] is a complete 9-odd-limit quintad, where &lt;5 8 12 14|note(n, t)&gt; = n.
Once again, if a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w), note(n+4), w)] is a complete 9-odd-limit quintad, where &lt;5 8 12 14|note(n, t) = n.


=The 13-limit 7et tablet=
=The 13-limit 7et tablet=
Line 140: Line 140:
note(n, c) = |(u-4)/5-4 c+3&gt;
note(n, c) = |(u-4)/5-4 c+3&gt;


In all cases &lt;5 8|note(n, c)&gt; = n. Tempering the the Pythgorean transversal by flattening 3 gives, as usual, a meantone tuning.
In all cases &lt;5 8|note(n, c) = n. Tempering the the Pythgorean transversal by flattening 3 gives, as usual, a meantone tuning.


=The tutone tutonic tablet=
=The tutone tutonic tablet=
Line 173: Line 173:
&lt;ul&gt;&lt;li&gt;If u mod 3 = 2, then&lt;/li&gt;&lt;/ul&gt;note(n, [r e3 e5]) = |(u-5)/3 e3+1 e5&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 3 = 2, then&lt;/li&gt;&lt;/ul&gt;note(n, [r e3 e5]) = |(u-5)/3 e3+1 e5&amp;gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Then if c is a tablet, note(n, c) gives the note belonging to the triad denoted by c, satisfying &amp;lt;3 5 7|note(n, c)&amp;gt; = n.&lt;br /&gt;
Then if c is a tablet, note(n, c) gives the note belonging to the triad denoted by c, satisfying &amp;lt;3 5 7|note(n, c) = n.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="The 7-limit 4et tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;The 7-limit 4et tablet&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="The 7-limit 4et tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;The 7-limit 4et tablet&lt;/h1&gt;
Line 185: Line 185:
&lt;ul&gt;&lt;li&gt;If u mod 4 = 3, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-11)/4  (-a+b+c)/2  (a-b+c)/2  1+(a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 3, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-11)/4  (-a+b+c)/2  (a-b+c)/2  1+(a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t. If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w)] is a 7-limit tetrad, and &amp;lt;4 6 9 11|note(n, t)| = n.&lt;br /&gt;
If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t. If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w)] is a 7-limit tetrad, and &amp;lt;4 6 9 11|note(n, t) = n.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="The 7-limit 5et tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;The 7-limit 5et tablet&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="The 7-limit 5et tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;The 7-limit 5et tablet&lt;/h1&gt;
Line 197: Line 197:
&lt;ul&gt;&lt;li&gt;If u mod 5 = 4, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-14)/5  (-a+b+c)/2  (a-b+c)/2  1+(a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 4, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-14)/5  (-a+b+c)/2  (a-b+c)/2  1+(a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Once again, if a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w), note(n+4), w)] is a complete 9-odd-limit quintad, where &amp;lt;5 8 12 14|note(n, t)&amp;gt; = n.&lt;br /&gt;
Once again, if a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w), note(n+4), w)] is a complete 9-odd-limit quintad, where &amp;lt;5 8 12 14|note(n, t) = n.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="The 13-limit 7et tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;The 13-limit 7et tablet&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="The 13-limit 7et tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;The 13-limit 7et tablet&lt;/h1&gt;
Line 247: Line 247:
&lt;ul&gt;&lt;li&gt;If u mod 5 = 4 then&lt;/li&gt;&lt;/ul&gt;note(n, c) = |(u-4)/5-4 c+3&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 4 then&lt;/li&gt;&lt;/ul&gt;note(n, c) = |(u-4)/5-4 c+3&amp;gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
In all cases &amp;lt;5 8|note(n, c)&amp;gt; = n. Tempering the the Pythgorean transversal by flattening 3 gives, as usual, a meantone tuning.&lt;br /&gt;
In all cases &amp;lt;5 8|note(n, c) = n. Tempering the the Pythgorean transversal by flattening 3 gives, as usual, a meantone tuning.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="The tutone tutonic tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;The tutone tutonic tablet&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="The tutone tutonic tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;The tutone tutonic tablet&lt;/h1&gt;